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Abstract

This thesis is devoted to a detailed study of asymptotics and inequalities related to
the partition function from analytic and combinatorial aspects.
In the first part of this thesis, we present a short and concise discussion on the evo-
lution of respective developments and the state-of-art.
The second part of the thesis focuses on to derive an infinite family of inequalities
associated to the partition function and its consequences. We start with deriving
an infinite family of inequalities for the logarithm of the partition function that in
turn shows its full asymptotic expansion. Applications of these inequalities help us
to construct a unified framework to prove multiplicative inequalities for the parti-
tion function which in turn reveal combinatorial properties like log-concavity, strong
log-concavity, Bessenrodt-Ono type inequality, and its variants, among many others.
Furthermore, we also obtain a full asymptotic expansion of (−1)r−1∆r log p(n) which
extends a result of Chen, Wang, and Xie. We also discuss the limitations of such an
infinite family of inequalities for log p(n) in comparison to getting a similar family
for p(n). Crossing this barrier, we obtain the full asymptotic expansion for the par-
tition function along with explicit computations on the error term so as to obtain an
infinite family of inequalities for p(n) which leads to the completion of works done by
Wright, Szekeres, and O’Sullivan. These new inequalities for p(n) and the proof of
getting such inequalities have manifold applications. First, we show how one can fol-
low the proof systematically to obtain a similar family of inequalities for the shifted
value of the partition function, denoted by p(n − `) with ` a non-negative integer,
which finally settles all the conjectures of Chen on the partition function inequalities
arising from the invariants of a quartic binary form. Second, we prove higher order
shifted Laguerre-Pólya inequalities for p(n) that confirms a conjecture of Wagner.
Third, we get the full asymptotic expansion of the finite differences for p(n) which
completes the work of Odlyzko. Consequently, this helps to work out on asymptotic
enumeration of ranks and cranks of partitions. Fourth, we partially resolve a conjec-
ture of Andrews and Merca on partition function inequalities arising from truncated
theta series. In the final chapter of this part, we obtain the bounds of the error
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term after truncation of the asymptotic expansion of the modified Bessel function of
non-negative order which extends and simultaneously refines a result of Bringmann,
Kane, Rolen, and Tripp. We also discuss the importance and novelty of the result
in the context of asymptotic enumeration of Fourier coefficients arising from certain
periodic meromorphic functions, which admit a Hardy-Ramanujan-Rademacher type
series expansion.
The third part of this thesis concentrates on proving inequalities related to the par-
tition function by applications of elementary combinatorial techniques. Avoiding the
analytic approach, we show the positivity of the second-order shifted difference for
integer partitions and overpartitions by getting a combinatorial description in the
terms of restricted partitions and overpartitions. This in turn provides a combina-
torial proof of the monotonicity of ranks and cranks of partitions. Inequalities for
the partition function by imposing certain restrictions on its parts and counting the
parity of the length of parts is the key topic in the last chapter of this thesis.
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Kurzfassung

Diese Arbeit ist einer detaillierten Untersuchung Vou Asymptotik und Ungleichun-
gen im Zusammenhang mit der Partitionsfunktion unter analytischen und kombina-
torischen Aspekten gewidmet.
Im ersten Teil dieser Arbeit wird eine kurze Diskussion über die Evolution der
entsprechenden Entwicklungen und den aktuellen Stand der Technik gegeben.
Der zweite Teil der Arbeit konzentriert sich auf die Ableitung einer unendlichen Fam-
ilie von Ungleichungen, die mit der Partitionsfunktion und ihren Konsequenzen ver-
bunden sind. Wir beginnen mit der Ableitung einer unendlichen Familie von Ungle-
ichungen für den Logarithmus der Partitionsfunktion, die ihrerseits ihre vollständige
asymptotische Entwicklung zeigt. Anwendungen dieser Ungleichungen helfen uns,
einen einheitlichen Rahmen zu konstruieren, um multiplikative Ungleichungen für
die Partitionsfunktion zu beweisen, die wiederum kombinatorische Eigenschaften wie
log-Konkavität, starke log-Konkavität, Ungleichungen vom Bessenrodt-Ono-Typ und
ihre Varianten, neben vielen anderen, aufzeigen. Darüber hinaus erhalten wir auch
eine vollständige asymptotische Erweiterung von (−1)r−1∆r log p(n), die ein Ergeb-
nis von Chen, Wang und Xie erweitert. Wir diskutieren auch die Grenzen einer
solchen unendlichen Familie von Ungleichungen für log p(n) im Vergleich zu einer
ähnlichen Familie für p(n). Nach Überwindung dieser Schranke erhalten wir die
vollständige asymptotische Erweiterung für die Partitionsfunktion zusammen mit
expliziten Berechnungen zum Fehlerterm, um eine unendliche Familie von Ungle-
ichungen für p(n) zu erhalten, die zur Vervollständigung der Arbeiten von Wright,
Szekeres und O’Sullivan führt. Diese neuen Ungleichungen für p(n) und der Beweis
für den Erhalt solcher Ungleichungen haben vielfältige Anwendungen. Erstens zeigen
wir, wie man dem Beweis systematisch folgen kann, um eine ähnliche Familie von
Ungleichungen für den verschobenen Wert der Partitionsfunktion zu erhalten, die mit
p(n − `) bezeichnet wird, wobei ` eine nicht-negative ganze Zahl ist, die schließlich
alle Vermutungen von Chen über die Ungleichungen der Partitionsfunktion, die sich
aus den Invarianten einer quartischen binären Form ergeben, klärt. Zweitens be-
weisen wir verschobene Laguerre-Pólya-Ungleichungen höherer Ordnung für p(n),
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die eine Vermutung von Wagner bestätigen. Drittens erhalten wir die vollständige
asymptotische Entwicklung der endlichen Differenzen für p(n), was die Arbeit von
Odlyzko vervollständigt. Dies hilft, die asymptotische Aufzählung von Rängen und
Verzweigungen von Partitionen zu erarbeiten. Viertens lösen wir teilweise eine Ver-
mutung von Andrews und Merca über Ungleichungen von Partitionsfunktionen, die
sich aus abgeschnittenen Thetareihen ergeben. Im letzten Kapitel dieses Teils er-
halten wir die Schranken des Fehlerterms nach Abschneiden der asymptotischen Er-
weiterung der modifizierten Besselfunktion nichtnegativer Ordnung, die ein Ergebnis
von Bringmann, Kane, Rolen und Tripp erweitert und gleichzeitig verfeinert. Wir
diskutieren auch die Bedeutung und Neuartigkeit des Ergebnisses im Zusammenhang
mit der asymptotischen Aufzählung von Fourier-Koeffizienten, die aus bestimmten
periodischen meromorphen Funktionen entstehen, die eine Reihenentwicklung vom
Typ Hardy-Ramanujan-Rademacher zulassen.
Der dritte Teil dieser Arbeit konzentriert sich auf den Nachweis von Ungleichungen
im Zusammenhang mit der Partitionsfunktion durch Anwendung elementarer kom-
binatorischer Techniken. Unter Vermeidung des analytischen Ansatzes zeigen wir
die Positivität der verschobenen Differenz zweiter Ordnung für ganzzahlige Parti-
tionen und Überpartitionen, indem wir eine kombinatorische Beschreibung in Form
von beschränkten Partitionen und Überpartitionen erhalten. Dies wiederum liefert
einen kombinatorischen Beweis für die Monotonizität von Rängen und Verzweigun-
gen von Partitionen. Ungleichungen für die Partitionsfunktion durch Auferlegung
bestimmter Beschränkungen für ihre Teile und das Zählen der Parität der Länge der
Teile ist das Hauptthema im letzten Kapitel dieser Arbeit.
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Chapter 1

Introduction

1.1 Contributions of this thesis

A major portion of this thesis is devoted to a rigorous and comprehensive study
of inequalities related to the partition function from an analytic aspect. We also
address inequalities for a certain class of restricted partition functions that are of
combinatorial flavor.
Following the usual notation, p(n) denotes the total number of partitions of n. Let
us begin with the Hardy-Ramanujan-Rademacher formula [124] for p(n) which reads

p(n) =

√
12

24n− 1

N∑
k=1

Ak(n)√
k

[(
1− k

µ(n)

)
eµ(n)/k +

(
1 +

k

µ(n)

)
e−µ(n)/k

]
+R2(n,N),

(1.1)
and an error bound due to Lehmer [98] that states

∣∣∣R2(n,N)
∣∣∣ < π2N−2/3

√
3

[( N

µ(n)

)3

sinh
µ(n)

N
+

1

6
−
( N

µ(n)

)2
]

; (1.2)

where µ(n) = π
6

√
24n− 1. After truncating the series (1.1) at N = 2 and applying

(1.2) Chen, Jia, and Wang [37, Lemma 2.2] proved that for all n ≥ 1206,

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)10

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)10

)
. (1.3)

This is the starting point of our journey to derive the asymptotics and inequalities
discussed in Chapters 3-7.
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In Chapter 3 we generalize (1.3) as follows: for all n > N(w),
√

12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)w

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)w

)
, (1.4)

where N(w) is given explicitly in Theorem 3.4.4. Applying the logarithm1 on both
sides of (1.4), we obtain an infinite family of inequalities for log p(n) as given below.
For w ∈ Z>0 with dw/2e ≥ γ0 and n > g(w), we have

Pn(w − 1)− γ1

(24α)dw/2e

( 1√
n

)w
< log p(n) < Pn(w − 1) +

γ2

(24α)dw/2e

( 1√
n

)w
, (1.5)

where

Pn(U) := − log 4
√

3− log n+ π

√
2n

3
+

U∑
u=1

gu√
n
u ,

with γ0, γ1, γ2, α and the sequence (gu)u≥1 are computed explicitly in Theorem 3.6.6.
As an application of (1.5), we obtain (cf. Theorem 3.7.6) for all n ≥ 120,(

1 +
π√

24n3/2
− 1

n2

)
< un :=

p(n)2

p(n− 1)p(n+ 1)
<
(

1 +
π√

24n3/2

)
. (1.6)

From the last inequality, we can conclude two facts: (i) (p(n))n≥26 is log-concave,
and (ii) that the rate of decay of the quotient un is indeed π√

24n3/2 which leads to a

completion of the study in this direction [39, eq. (1.2)-(1.4), Sec. 2].
Chapter 4 presents a couple of examples on inequalities related to log p(n) as applica-
tions of (1.4). First, we obtain a similar inequality in Theorem 4.3.9 for log p(n+ s)
for s ∈ Z≥0 as in (1.5). The inequalities for log p(n + s) and its generalization for∑

i log p(n+ si) in Theorem 4.3.13 help us to study the following aspects.

1. To prove inequalities2 of the following form:

L(T,~s) :=
T∏
i=1

p(n+ si) ≥
T∏
i=1

p(n+ ri) := R(T,~r), (1.7)

where T ≥ 1, and (si)1≤i≤T , (ri)1≤i≤T are non-negative integers by an algo-
rithmic approach, see Section 4.5. One can also decide the rate of decay of
the quotient L(T,~s)/R(T,~r) as shown in (1.6). Moreover, (1.7) provides an
unified framework to prove log-concavity, strong log-concavity [53, Sec. 5], and
Bessenrodt-Ono type inequalities [26] for p(n), see Remark 4.3.14.

1Throughout the thesis, the logarithm is taken with respect to the base e; i.e., natural logarithm.
2Which we call multiplicative inequalities
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2. To present both an upper and lower bound of (−1)r−1∆r log p(n) along with a
cut-off n(r) for n in Theorem 4.4.6 so that we can compute from which point on
the inequality holds for each positive integer r. This extends a result of Chen,
Wang, and Xie [39, Thm. 3.1, 4.1]. Moreover, we provide a full asymptotic
expansion of (−1)r−1∆r log p(n) in Theorem 4.4.7.

We conclude Chapter 4 by discussing the limitations of applying inequalities for
log p(n+ s) to other partition function inequalities, for example, higher order Turán
inequalities. In Theorem 4.6.9, we obtain an infinite family of inequalities for

∏
i p(n+

si) directly from inequalities for
∑

i log p(n + si) by taking the exponential. But in
order to prove an inequality of the following form,

M∑
j=1

T∏
i=1

p(n+ si,j) ≥
M∑
j=1

T∏
i=1

p(n+ ri,j), (1.8)

a major difficulty is in the computation for bounds of error terms.
To remove this obstacle, we trace back to (1.4). Instead of applying the logarithm

on (1.4), we compute the Taylor series expansion of

√
12eµ(n)

24n− 1

(
1 − 1

µ(n)

)
. This in

turn gives (cf. Lemma 5.3.19)

√
12eµ(n)

24n− 1

(
1− 1

µ(n)

)
=

1

4n
√

3
eπ
√

2n/3.
∞∑
t=0

g(t)
√
n
t , (1.9)

where

g(t) =
1

(−4
√

6)t

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k

.

Recently, O’Sullivan [112] obtained (1.9) but it does not lead to proving inequalities
for the partition function because as it seems, no results on bounds for the error
term are available in the literature. To obtain both an upper and lower bound of the

error term
∑
t≥m

g(t)/
√
n
t
, we need to estimate g(t) in the following way:

f(t)−`(t) ≤ g(t) ≤ f(t)+u(t), with lim
t→∞

g(t)

f(t)
= 1, lim

t→∞

`(t)

f(t)
= 0, and lim

t→∞

u(t)

f(t)
= 0.

In Chapter 5, we resolve this problem by simplifying the deceptively simple look-
ing sum g(t) using the symbolic summation package Sigma due to Schneider [128].
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Finally, we obtain an infinite family of inequalities for p(n) that reads

eπ
√

2n/3

4n
√

3

(
w−1∑
t=0

g(t)
( 1√

n

)t
+
L(w)√
n
w

)
< p(n) <

eπ
√

2n/3

4n
√

3

(
w−1∑
t=0

g(t)
( 1√

n

)t
+
U(w)√
n
w

)
,

(1.10)
given in Theorem 5.7.5.
Applying a similar proof methodology as described in the last paragraph, in Chapter
6, we derive inequalities for p(n− `) with ` ∈ Z≥0 of the following form:

eπ
√

2n/3

4n
√

3

(
w−1∑
t=0

g(t, `)
( 1√

n

)t
+
L(w, `)√

n
w

)
< p(n− `)

<
eπ
√

2n/3

4n
√

3

(
w−1∑
t=0

g(t, `)
( 1√

n

)t
+
U(w, `)√

n
w

)
.

(1.11)

For the definitions of g(t, `), L(w, `), and U(w, `), we refer to Theorem 6.4.5). Using
this infinite family of inequalities, we obtain the following results.

1. In Section 6.5, we confirm all the conjectures of Chen [36, eq. (6.17)-(6.18),
Conj. 6.15-6.16] on partition function inequalities arising from invariants of a
quartic binary form.

2. (p(n))n≥95 satisfies the higher order Turán inequality.

3. (p(n))n≥222 is 2-log-concave.

Further applications of Theorem 6.4.5 are discussed in Section 6.7.
In Chapter 7, we study the asymptotic growth of coefficients of truncations of theta
series by applying Theorem 6.4.5 and this leads to settling (partially!) Andrews
and Merca’s [10, Sec. 7] conjecture. Moreover, we also show that the conjecture of
Andrews and Merca is even true for the excluded case; i.e., n even and k odd.
The Chapter 8 focuses on deriving a family of inequalities for the modified Bessel
function of the first kind of non-negative order, denoted by Iν(x) with ν a non-
negative integer or a half-integer, and x a real number ≥ 1. A natural question is
why do we need such an infinite family of inequalities for Iν(x)? Among many others,
our attention is on the appearance of Iν(x) in Hardy-Ramanujan-Rademacher type
series expansions for Fourier coefficients of certain classes of Dedekind eta quotients3;

3For a definition, see [117, Definition 1.63]

6



see for example [41, Thm. 1.1] or [138, Thm. 1.1]. These coefficients are quite often
entangled with combinatorial features that emerge from the question of whether
a real polynomial associated with such sequences has roots all real. For example,
consider the Jensen polynomial of degree d and shift n for a sequence (α(n))n≥0 of
real numbers, defined as

Jd,nα (x) =
d∑
j=0

(
d

j

)
α(n+ j)xj.

To solve problems like log-concavity, higher order Turán inequalities for a sequence,
say af (n), arising from the Fourier expansion of a periodic meromorphic function,
say a Dedekind eta quotient f(q), we would like to estimate af (n) by computing a
precise estimation of the associated Hardy-Ramanujan-Rademacher type series, say
Sf . Now, in order to provide such a precise estimate for the main term obtained
after truncating the series Sf to a finite number of terms, inequalities for Iν(f)(x)
are needed, where the index ν(f) is depending on f . For example, in order to prove
log-concavity of the colored partition function pk(n)4, Bringmann et. al. [32, Lemma
2.2 (4)] estimated the error term by truncation of the asymptotic expansion of Iν(x)
at N = 3, which plays a key role in their proof of the conjecture [32, Conjecture 1].
Recently, Dong, Ji, and Jia [57] proved log-concavity and other associated inequalities
for broken k-diamond partitions ∆k(n)5 (with k = {1, 2}). But in order to prove
the higher order Turán inequalities for ∆k(n), Jia [81, Thm 2.1] estimated the error
term obtained after truncation at N = 5 and obtain a similar inequality. The
above examples indicate that to prove real rootedness of Jd,npk (x) (k ≥ 2) and Jd,n∆k

(x)
(k ∈ {1, 2}) for d ≥ 4, we need the truncation point N higher than 5; i.e., as
d increases, the choice of truncation N(d) also increases. This is one of the key
motivations to compute bounds for the absolute value of the error term for truncation
of the asymptotic expansion of Iν(x) at any point N . Section 8.3 presents the case
when ν is non-negative integer, Section 8.4 treats the case when ν being a half-integer.
For both cases, our Theorems 8.3.9 and 8.4.6 extend the results of Bringmann et. al.
and Jia.
In Chapter 9, we provide a very simple combinatorial proof of a result due to Gomez,
Males, and Rolen which states that

∆2
j(p(n)) := p(n)− 2p(n− j) + p(n− 2j) > 0. (1.12)

We prove the analogous inequality (1.12) for the overpartition function p(n)6 also

4Defined in [32, p. 2]
5For definition, see [57, p. 1]
6See the definition [46, eq. (1.1)]
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(see Theorems 9.1.5 and 9.1.9).
In Chapter 10, we develop a coherent and systematic procedure to construct a map
from its domain set to the range by decomposing the map into successive injective
maps so that we can almost exhaust the domain set but on the range, we have a
bigger portion left which is not being mapped. This fundamental principle helps us
prove the results of parity bias in parts of partitions and settle a conjecture due to
Kim, Kim, and Lovejoy. We further show a couple of similar phenomena for a certain
class of restricted partition functions.

Motivations and the history of all the inequalities related to p(n) discussed in the
previous paragraphs are given in detail in Sections 2.4-2.7.

1.2 How to read the thesis

This thesis is comprised of several chapters which are connected but, to relate the
interest of readers, we provide a road map to read the thesis.
A more detailed version of the abstract of the thesis including its purposes and
novelty is given in Chapter 1. For readers interested in the history of asymptotics
and inequalities related to the partition function, we refer to Chapter 2. Inequalities
and asymptotics related to the logarithm for the partition function can be found in
Chapter 3 and its applications in Chapter 4. The reader can easily follow up on the
materials covered in Chapter 5 without having a look at Chapters 3 and 4. Chapter
5 is essential to follow Chapter 6. Chapter 7 can be read independently after Chapter
6. Chapters 8-10 can be followed without looking at its previous chapters.

1.3 Connection to (joint) articles by the author

Chapters in this thesis are excerpted from the papers written by the author with
his collaborators or by himself alone. We associate all the chapters with their corre-
sponding articles by using the format “Chapter → Article listed the bibliography:”

• Chapter 3 is essentially (up to minor modifications, cf. [22]):

K. Banerjee, P. Paule, C. S. Radu, and W. H. Zeng. New inequalities for p(n)
and log p(n). Ramanujan Journal, (2022). https://doi.org/10.1007/s111
39-022-00653-6.

• Chapter 4 is essentially (up to minor modifications, cf. [13]):
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K. Banerjee. A unified framework to prove multiplicative inequalities for the
partition function. Submitted for publication, (2022). https://www3.risc.jk
u.at/publications/download/risc 6614/inequalityproductform.pdf

• Chapter 5 is essentially (up to minor modifications, cf. [21]):

K. Banerjee, P. Paule, C. S. Radu, and C. Schneider. Error bounds for the
asymptotic expansion of the partition function. Submitted for publication, (2022).
https://arxiv.org/abs/2209.07887

• Chapter 6 is essentially (up to minor modifications, cf. [16, 14]):

K. Banerjee. Invariants of the quartic binary form and proofs of Chen’s con-
jectures for partition function inequalities. Submitted for publication, (2022).
https://www3.risc.jku.at/publications/download/risc 6615/Chen.pdf

K. Banerjee. Higher order Laguerre inequalities for the partition function and
its consequences. In preparation, (2022).

• Chapter 7 is essentially (up to minor modifications, cf. [19]):

K. Banerjee and M. G. Dastidar. Inequalities for the partition function arising
from truncated theta series. Submitted for publication, (2022). https://www3
.risc.jku.at/publications/download/risc 6622/AndMer.pdf

• Chapter 8 is essentially (up to minor modifications, cf. [15]):

K. Banerjee. Inequalities for the modified Bessel function of first kind of non-
negative order. Journal of Mathematical Analysis and Applications, 524 (2023),
p. 127082.

• Chapter 9 is essentially (up to minor modifications, cf. [17]):

K. Banerjee. Positivity of second shifted difference of partitions and overparti-
tions: a combinatorial approach. Enumerative Combinatorics and Applications
3:2 (2023).

• Chapter 10 is essentially (up to minor modifications, cf. [18]):

K. Banerjee, S. Bhattacharjee, M. G. Dastidar, P. J. Mahanta, and M. P.
Saikia. Parity biases in partitions and restricted partitions. European Journal
of Combinatorics, 103 (2022), p. 103522.
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Chapter 2

Preliminaries

2.1 Approximations, asymptotics, and inequalities

“All exact science is dominated by
the idea of approximation.”

Bertrand Russell

The problem of approximation of a given number or a sequence or a function
is one of the oldest challenges of mathematics. Since the discovery of irrationality,
considerations for the theory of approximation had become necessary. The formula
for approximating the square root of a number, often attributed to the Babylonians,
is a case in point. Mathematical formulae were developed to assist in approximating
mainly transcendental functions and initially, the representations primarily relied on
Taylor’s formula and some interpolation formulae developed by Newton. Probably
the first application of this subject outside the regime of mathematics is due to Eu-
ler who tried to solve the problem of drawing a map of the Russian empire with
exact latitudes. After Euler, Gauß, Laplace, Fourier, Cauchy, Chebyshev, Lagrange,
Poisson, Fejér, Weierstraß, Runge among many others expanded the theory of ap-
proximations while working on several problems in different directions.
Asymptotic analysis is a branch of mathematical analysis that provides a rigorous
foundation to understand the language of approximation. Let us start with a well-
known asymptotic result, Stirling’s formula:

lim
n→∞

n!√
2πnnne−n

= 1. (2.1)
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This formula was first discovered by de Moivre in the following form [45]:

lim
n→∞

n!

Cnn+1/2e−n
= 1, (2.2)

and he gave a rational approximation of logC and Stirling’s contribution was to de-
rive explicitly C =

√
2π. Now, the question naturally arises what is the significance

of (2.1) when one can easily compute n! theoretically? The point is, as n became
larger, we do not know how the function n! really behaves. Thanks to Stirling’s
approximation, we have now the information that n! has exponential growth; i.e., in
other words, we perceive the “unknown” function n! in terms of our known and famil-
iar functions. Before moving forward, we state another deep and famous asymptotic
formula. Let x be a positive real number and π(x) denotes the number of primes
not exceeding x. Based on the tables by Felkel and Vega, Legendre conjectured in
1797-1798 that

lim
x→∞

π(x)(
x

A log x+B

) = 1, (2.3)

where A and B are unspecified constants and later in 1808, he proposed that A = 1
and B = −1.08366. The prime number theorem, originally conjectured by Gauß,
and independently proved by Hadamard [74] and de la Vallée Poussin [52], states
that

lim
x→∞

π(x)(
x/ log x

) = 1. (2.4)

For a proof of the prime number theorem without using the Riemann zeta function,
we refer to Selberg’s proof [131].
We observe that (2.1)-(2.4) are all limit formulas and therefore, they have little value
for numerical purposes. For example, we can not draw any concrete numerical con-
clusion about n! from (2.1) as it merely says for large n, n! behaves like

√
2πnnne−n.

The limit
f(n)→ 1 as n→∞

tells that for every ε > 0, there exists N(ε) such that for all n > N(ε), |f(n)−1| < ε.
Here two key factors are suppressed; (i) the order of magnitude of ε and (ii) exact
information about N(ε). We can remove the factor (i) by allowing the Bachman-
Landau O-notation1 [94]. The big-O notation is defined in the usual way: f(n) =
O(g(n)) means that there exists an absolute constant C such that |f(n)| ≤ Cg(n)

1Here O stands for “Ordnung”, which means “order of” in German.
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as n→∞. For example, if we say f(n)− 1 = O(1/n), this implies that

|f(n)− 1| ≤ C

n
as n→∞.

Now we have at least the growth of ε, but still factor (ii) remains open because we
have no control over the constant C so as to comment explicitly on the cut-off value
N(ε). So, whenever we have an inequality of the following form, say

|f(n)− 1| ≤ 3

n
,

then we can study the cut-off value for n in a systematic way. We say that f(n) is
asymptotically equivalent to g(n) as n → ∞, if the quotient f(n)/g(n) for n → ∞
tends to unity, denoted by f(n) ∼

n→∞
g(n). Our next goal is to understand the growth

of f(n)/g(n)− 1 as n→∞ in the following manner:

f(n)

g(n)
− 1 = O

( 1

χ(n)

)
,

f(n)

g(n)
− 1− c1

χ(n)
= O

( 1

χ(n)2

)
,

...

f(n)

g(n)
− 1−

k∑
i=1

ci
χ(n)i

= O
( 1

χ(n)k+1

)
, (2.5)

where χ(n) is an increasing function in n with χ(n)→∞ as n→∞, the ci are con-
stants, and the truncation point k chosen at will. Equation (2.5) gives the asymptotic
expansion of the sequence f(n) of order k; i.e.,

f(n) ∼
n→∞

g(n)
k∑
i=0

ci
χ(n)i

, (2.6)

with c0 = 1. One of the earliest instances to get a full asymptotic expansion for a
smooth function is the Euler-Maclaurin summation formula, independently discov-
ered by Euler [61] and Maclaurin [102]. It states that if m and n are natural numbers
and f(x) is a real or complex-valued smooth function over the interval [m,n], then

n∑
i=m

f(i) =

∫ n

m

f(x) dx+
f(n) + f(m)

2
+

bN/2c∑
k=1

B2k

(2k)!

(
f (2k−1)(n)− f (2k−1)(m)

)
+RN ,

(2.7)
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where Bk denotes the Bernoulli numbers defined by
∞∑
k=1

Bk
tk

k!
=

t

et − 1
, f (j)(x) de-

notes the j-th derivative of f with respect to x, and

RN = (−1)N+1

∫ n

m

f (N)(x)
PN(x)

N !
dx, (2.8)

with PN(x) = BN

(
x−bxc

)
is the periodic Bernoulli function defined by the Bernoulli

polynomial BN(x) recursively defined by B0(x) = 1, for all N ≥ 1, B′N(x) =

NBN−1(x) and

∫ 1

0

BN(x) dx = 0. Here we quote three famous examples as ap-

plications of (2.7).

n∑
k=1

1

k
∼

n→∞
γ + log n+

1

2n
−
∞∑
k=1

B2k

2kn2k
, (E1)

where γ is the Euler-Mascheroni constant.

n∑
k=1

1

k2
∼

n→∞

π2

6
− 1

n
+

1

2n2
− 1

6n3
+

1

30n5
− . . . . (E2)

log n! ∼
n→∞

n log
(n
e

)
+

1

2
log n+ log

√
2π −

∞∑
k=1

(−1)kBk+1

k(k + 1)nk
. (S1)

We note that from none of the above three examples, we can get information about
the order of growth of the respective error terms because until now, we have not
provided any information about the size of the error term RN (2.8). Using Lehmer’s
estimate [97] on maxima of Bernoulli polynomials, it readily follows that

|RN | ≤
2ζ(N)

(2π)N

∫ n

m

|f (N)(x)| dx,

where ζ denotes the Riemann zeta function.
In the literature on asymptotic analysis, it seems that computations of the error
bound have been largely ignored. To illustrate this statement, we go back to (2.6).
We can retrieve (2.6), each step given in the scheme (2.5) along with an estimation
of the cut-off , if we consider the following procedure from the inequality aspect:(

1 +
c′1
χ(n)

)
<
f(n)

g(n)
<

(
1 +

c1

χ(n)

)
for all n > N1,
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(
1 +

c1

χ(n)
+

c′2
χ(n)2

)
<
f(n)

g(n)
<

(
1 +

c1

χ(n)
+

c2

χ(n)2

)
for all n > N2,

...(
M∑
k=0

ck
χ(n)k

+
E`
M+1

χ(n)M+1

)
<
f(n)

g(n)
<

(
M∑
k=0

ck
χ(n)k

+
Eu
M+1

χ(n)M+1

)
for all n > NM+1.

(2.9)

As an example, we refer to Nemes’ [109] error bound computation for the asymptotic
expansion of n!. All the results on inequalities in Part II follow the theme presented
in (2.9). For a more detailed study on asymptotic analysis, we refer the reader to
[51].
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2.2 The partition function

In the history of the literature on partitions, Leibniz seems to be the first person
to talk about integer partitions. In a 1674 letter [100, p. 37] he asked J. Bernoulli
about the number of “divulsions” of an integer. In modern terminology, “divulsion”
is rephrased as the number of partitions of a positive integer. Leibniz observed that
there are three partitions of 3 (3, 2+1, 1+1+1), five partitions of 4 (4, 3+1, 2+2, 2+
1 + 1, 1 + 1 + 1 + 1), seven partitions of 5 and eleven partitions of 6 and consequently
it leads to a problem which is still open: are there infinitely many integers n for
which the total number of partitions of n is a prime? Keeping this question aside,
let us define the partition function.

Definition 2.2.1. A partition of a positive integer n is a finite non-increasing se-
quence of positive integers π1, π2, . . . , πr such that

∑r
i=1 πi = n. The πi are called

the parts of the partition. The partition (π1, π2, . . . , πr) will be denoted by π, and we
shall write π ` n to denote that π is a partition of n. The partition function p(n)
is the number of partitions of n. The set of all partitions of n is denoted by P (n).
Following the standard convention, we define P (0) = {} and p(0) = 1.

Euler undertook a rigorous and systematic investigation of the theory of parti-
tions. Ph. Naudé [62] wrote a letter to Euler asking about the number of partitions
of n with the total number of parts in each partition being m. Precisely the question
of Naudé was: what is the total number of partitions of 50 into seven distinct parts?
It is quite unlikely to get the total number by writing down all the partitions of 50
into seven distinct parts. To avoid this, Euler introduced the generating functions.
Let pm(n) denote the number of partitions of n into m parts. Then following Euler’s
observation, we get

∑
m,n≥0

pm(n)zmqn =
∞∏
k=1

(1+zqk) = (1+zq)
∞∏
k=1

(1+(zq)qk) = (1+zq)
∑
m,n≥0

pm(n)zmqm+n.

Comparing the coefficients of zmqn on both sides of the above identity, we find a
beautiful recursive formula

pm(n) = pm(n−m) + pm−1(n−m),

which gives p7(50) = 522. Euler proceeded further to obtain a generating function
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for p(n). Euler’s computation can be put in the following way:

∞∑
n=0

p(n)qn =(1 + q1 + q1+1 + q1+1+1 + . . . )

× (1 + q2 + q2+2 + q2+2+2 + . . . )

× (1 + q3 + q3+3 + q3+3+3 + . . . )

...

=
∞∏
n=1

(1 + qn + qn+n + qn+n+n + . . . )

=
∞∏
n=1

1

1− qn
.

(2.10)

In order to simplifying the computations for p(n), Euler realized that a power series
expansion for

∏∞
n=1(1−qn) is essential. His empirical discovery leads to the following

identity which is now known as Euler’s Pentagonal Number Theorem.

∞∏
n=1

(1− qn) =
∞∑

n=−∞

(−1)nqn(3n−1)/2. (2.11)

This identity was proved by Euler himself many years after the discovery. A modern
exposition of Euler’s proof and the importance of the theorem is beautifully described
in Andrews’ article [7]. Putting (2.10) and (2.11) together, we see that(

∞∑
n=0

p(n)qn

)(
∞∑

n=−∞

(−1)nqn(3n−1)/2

)
= 1, (2.12)

and comparing the coefficients of qn on both sides of the last identity, Euler found
the following recurrence for p(n): p(0) = 1, and for all n ≥ 1,

p(n)− p(n− 1)− p(n− 2) + p(n− 5) + p(n− 7)− · · · = 0.

After Euler, the theory of partitions propagates through the works of great partition
theorists like Sylvester, Cayley, Jacobi, MacMahon, Hardy, Ramanujan, Rademacher,
Gordon, and Andrews among many others. The reader can consult Andrews’ mon-
umental treatise [8]. In addition to that, the entire history of partitions up to 1918
is documented in [55], and for a survey article, we refer to [72].
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The counting problem for p(n) (for large values of n) has been one of the most pre-
dominant themes in the literature on integer partitions. The question is how fast does
p(n) grow. First of all, we point out a simple fact that states: (p(n))n≥1 is a strictly
increasing sequence. For a partition π ` n − 1, define a map φ : P (n − 1) → P (n)
by φ(π) = (π, 1); i.e., insertion of 1 as part in π that yields a partitions of n and it
is clear that φ is an injective map and P (n) \ φ(P (n− 1)) is the set of all partitions
of n where 1 is not a part (also known as non-unitary partitions of n). One can
also prove this by using Euler’s generating function for p(n) (2.10). Let us formulate
the problem of counting p(n) in terms of counting partitions of n subject to the
condition that each partition has at most k parts. Let p≤k(n) denotes total number
of such partitions of n. Observe that for k = n, p≤k(n) = p(n). Cayley [34] and
Sylvester [139] gave a number of formulas for p≤k(n) with small values of k, which
was anticipated by Herschel [77]. For example, p≤2(n) = b(n + 1)/2c. But still, the
question on growths of p(n) remains unanswered. We will come back to this question
and a surprising answer in Section 2.4.
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2.3 A brief introduction to modular forms

Elementary trigonometric functions play a great role in mathematics and mathemat-
ical physics since antiquity. Among many discoveries, one of the more remarkable
ones was due to Euler which states that eix = cos x + i sinx, where i is an imag-
inary number (termed by Descartes) satisfying i2 = −1, and consequently, we get
eiπ + 1 = 0. Fourier made important contributions to the study of trigonometric
series, after preliminary investigations by Euler, d’Alembert, and D. Bernoulli. In
1807, Fourier introduced a series, what is nowadays known as the “Fourier series”,
for the purpose of solving the heat equation in a metal plate. Roughly we can say
that a Fourier series is an infinite sum that represents a periodic function as a sum
of sine and cosine functions. Both sine and cosine function are periodic with period
2π; i.e., sin(x+ 2π) = sin x and trivially, sin(x+ 2πk) = sin x for all k ∈ Z. In group
theoretic language, this translates to the fact: sin 2πx is invariant under the action
of the abelian group (Z,+). Therefore, the question arises which class of functions
are invariant under the action of a non-abelian group? Before giving an example of
such a class of functions, let us introduce a few preliminary definitions.
Define the set of complex numbers by C and the complex upper half plane by
H := {τ ∈ C : Im τ > 0}. Let M2(Z) be the set of 2 × 2 matrices with integer
entries and define the general linear group of order 2 with positive determinant by

GL+
2 (Z) :=

{(
a b
c d

)
∈M2(Z) : ad− bc > 0

}
.

The non-abelian group
(

GL+
2 (Z), ·

)
acts on H in the usual manner; i.e., for γ ∈

GL+
2 (Z) and τ ∈ H, γτ :=

aτ + b

cτ + d
. The full modular group is defined as

SL2(Z) :=

{(
a b
c d

)
∈ GL+

2 (Z) : ad− bc = 1

}
.

The group SL2(Z) is generated by the two matrices S and T [88, Prop. 4, Chap. III]
with

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Definition 2.3.1. Let k be an integer and a meromorphic function f : H → C is

called weakly modular of weight k over SL2(Z) if for all γ =

(
a b
c d

)
∈ SL2(Z) and

for all τ ∈ H,
f(γτ) := (cτ + d)kf(τ). (2.13)
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Note that for γ = T , we have f(τ + 1) = f(τ). From the theory of complex anal-
ysis, we know that such a periodic meromorphic function admits a Fourier expansion
f(τ) =

∑
n∈Z af (n)qn, where q = e2πiτ and af (n) are called Fourier coefficients.

Moreover, if f satisfies (2.13) and has a pole at i∞ of order m ∈ Z≥0, then the
Fourier expansion of f is of the form:

f(τ) =
∞∑

n=−m

af (n)qn and af (−m) 6= 0. (2.14)

Definition 2.3.2. Let k be an integer and f be a meromorphic function on H.
Then f is called a weakly holomorphic modular form of weight k over SL2(Z) if the
following hold:

1. f satisfies (2.13) for all γ ∈ SL2(Z) and all τ ∈ H.

2. f has a Fourier expansion of the form (2.14).

If k = 0, then f is called a modular function over SL2(Z). We say that f is a modular

form if f is holomorphic on Ĥ := H ∪ {i∞}.

Now it is clear that the modular functions are invariant under the non-abelian
group SL2(Z). For a more detailed study on modular forms, we refer to [54, 117]. For
the results and definitions assumed here from complex analysis, we refer the reader
to [136]. We only need Definition 2.3.2 (which will be useful in Section 2.7) so that
the thesis would be self-contained.
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2.4 Hardy-Ramanujan-Rademacher formula for p(n)

We return back to the question what is the growth of p(n)? In 1918, Hardy and
Ramanujan [76] found an asymptotic series for p(n). The simplest special form of
their result is the assertion that,

p(n) ∼ 1

4n
√

3
eπ
√

2n/3, as n→∞. (2.15)

A few years later, Uspensky [144] independently arrived at (2.15). Before jumping
over directly to the main result of their paper, it is worth pointing out how Hardy
and Ramanujan came up systematically with the asymptotic series for p(n). In [76,
eq. (2.11)], they proved that for some positive constants H and K,

H

n
e2
√
n < p(n) <

K

n
e2
√

2n (2.16)

holds for all n ≥ 1. From (2.16), it became clear that p(n) has exponential growth.
So the obvious question arises what is the order of the exponential growth? In other
words, determine the constant C such that

C = lim
n→∞

log p(n)√
n

.

The computation of C = π
√

2/3 is given with details in [76, Sec. 3]. Recall the
generating function of p(n) (2.10) that states

∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
:= f(q).

Applying the Cauchy integral formula, we have

p(n) =
1

2πi

∫
Γ

f(q)

qn+1
dq, (2.17)

where the path Γ encloses the origin and lies entirely inside the unit circle. Truncating
the generating function (2.4) of p(n), we observe that each partial porduct fN(q) :=∏N

n=1
1

1−qn has a pole at q = 1 of order N , a pole at q = −1 of order bN/2c, poles at

q = e2πi/3 and q = e4πi/3 of order bN/3c, and so on. Hardy and Ramanujan defined
the following auxiliary function

F (q) :=
1

π
√

2

∞∑
n=1

Ψ(n)qn,
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where

Ψ(n) :=
d

dn

(
coshCλn − 1

λn

)
,

C = π
√

2/3, and λn =
√
n− 1/24. Now the behaviour of f and F is similar inside

the unit circle and in the neighbourhood of q = 1. Applying Cauchy’s integral
formula for f − F , they obtain the following error bound, namely:

p(n) =
1

2π
√

2

d

dn

(eCλn
λn

)
+O(eD

√
n), (2.18)

where D > C/2. Taking n → ∞, (2.18) gives (2.15). But how close the for-
mula (2.18) with real values of p(n)? For example, taking n = 61, 62, 63 (2.18)
gives 1121538.672, 1300121.359, 1505535.606, whereas the the correct values are
1121505, 1300156, 1505499. So the errors alternate in sign. To explain this factor,
the same principle is applied near the point −1 on the unit circle which contributes
to the next dominant term in the asymptotic series expansion for p(n); i.e.,

p(n) =
1

2π
√

2

d

dn

(eCλn
λn

)
+

(−1)n

2π

d

dn

(e 1
2
Cλn

λn

)
+O(eD

√
n), (2.19)

where D > C/3. This process can be continued further by taking into consideration
the points on the unit circle where f has singularities. For example, the singularities
which are important after q = −1 are q = e2πi/3 and q = e4πi/3, and so on. The
major obstacle to proceeding systematically is to construct the auxiliary functions
associated with the points q = e2πih/k of singularity lying on the unit circle. The
construction is as follows:

Fh,k(q) := ωh,k

√
k

π
√

2
FC/k(qh,k),

where ωh,k is a 24th root of unity, qh,k = qe−2πih/k; and for α being positive and
independent of n,

Φ(q) = f(q)−
α
√
n∑

k=1

∑
1≤h≤k
(h,k)=1

Fh,k(q).

If then Fh,k(q) =
∑
ch,k,nq

n, we obtain from Cauchy integral formula,

p(n)−
α
√
n∑

k=1

∑
1≤h≤k−1

(h,k)=1

ch,k,n =
1

2πi

∫
Γ

Φ(q)

qn+1
dq, (2.20)
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where Γ is a circle of radius R < 1 and its center is the origin. By dissecting the
circle Γ by means of Farey series2 and computing the bounds of the integral on the
right-hand side of (2.20), Hardy and Ramanujan finally proved that the error term
is of order O(1/n4). The final form of their formula for p(n) can be stated as follows.

Theorem 2.4.1. For all sufficiently large values of n,

p(n) =
1

2π
√

2

N∑
k=1

√
kAk(n)

d

dn

(eCλn/k
λn

)
+O(n−1/4), (2.21)

where
N = α

√
n and Ak(n) =

∑
1≤h<k
(h,k)=1

e−2πinh/k+πis(h,k)

with

s(h, k) =
k−1∑
µ=1

(µ
k
−
⌊µ
k

⌋
− 1

2

)(hµ
k
−
⌊hµ
k

⌋
− 1

2

)
.

To know in detail about the contributions of both Hardy and Ramanujan, we
refer to [101, 132] where the reader might be enhanced to get different opinions from
the two eminent number theorists. We end this discussion by quoting further two
instances for verifying (2.21) with the actual values of n. MacMahon3 computed
values of p(n) for 1 ≤ n ≤ 200. The actual values for

p(100) = 190569292 and p(200) = 3972999029388,

whereas if taking the first six terms of (2.21) for n = 100 and first eight terms of
(2.21) for n = 200 gives

p(100) ≈ 190569291.996 and p(200) ≈ 3972999029388.004.

This proves the accuracy of the formula which is, needless to say, astounding and
beautiful. In [76, Sec. 6, 6.22], they remarked that it remains unanswered whether
the infinite series (by extending n → ∞ in (2.21)) is convergent or divergent and if
it is convergent, then whether it represents p(n). Lehmer [96] proved that (2.21) is
divergent when N →∞.

2This gives birth of the celebrated “Circle Method”
3See the table [76, p. 377-378]
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In the fall of 1936, Rademacher [124] improved the formula (2.21) so that a convergent
infinite series was found for p(n), namely,

p(n) =
1

π
√

2

∞∑
k=1

√
kAk(n)

[
d

dx

sinh
(π
k

(
2
3

(
x− 1

24

))1/2)
(
x− 1

24

)1/2

]
x=n

. (2.22)

Rademacher [124] also proved that if the series (2.22) is truncated after N terms,
the absolute value of the error is bounded by

2π2

9
√

3N
e

π
N+1

√
2n/3,

which tends to 0 as N → ∞. If we truncate the series (2.22) at N and compare it
with (2.21), it clearly shows two significant differences between them:

1. In (2.21), the parameters n and N are entangled whereas in (2.22), we have
the complete freedom over n and N .

2. The exponential function in (2.21) is replaced by the sine hyperbolic function
in (2.22) which made the series convergent.

Selberg [132, p. 705] came up with the same formula (2.22) for p(n) around the same
time but never published his result when he came to know that Rademacher already
had it. Lehmer [99] made a significant improvement on the bounds of the absolute
value of the error term obtained by Rademacher before. After Rademacher’s con-
tribution in deriving convergent series for p(n), Hagis, Lehner, Zuckerman among
many others adapted his refinements using Ford circles [123] to get similar conver-
gent series for Fourier coefficients of certain weakly holomorphic modular forms and
related functions.
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2.5 Real rootedness of polynomials

“The one contribution of mine that
I hope will be remembered has
consisted in just pointing out that
all sorts of problems of
combinatorics can be viewed as
problems of location of the zeros of
certain polynomials and in giving
these zeros a combinatorial
interpretation”

Gian-Carlo Rota

The study of the roots of polynomials dates back to the Sumerians (third millen-
nium B.C.) and has deeply influenced the development of mathematics throughout
the centuries. This study has motivated the introduction of some fundamental con-
cepts of mathematics such as irrational and complex numbers, and Galois theory to
name a few, which has substantially influenced the earlier development of numerical
computing. In this section, we restrict ourselves to study on polynomials with non-
negative coefficients which have only real roots.
Let f(x) =

∑n
k=1 akx

k be a polynomial of degree n with non-negative coefficients.
We say that f(x) is real-rooted if all its zeros are real. Real-rooted polynomials have
attracted much attention during the past decades. One of the earliest instances of
studying relations between the real-rootedness of a polynomial with its coefficients
dates back to Newton’s theorem stated below.

Theorem 2.5.1. [75, p. 52] Let p(x) =
∑n

k=0 akx
k be a polynomial of degree n with

ak ∈ R for all 0 ≤ k ≤ n and all roots of p(x) are real. Then a2
k ≥ ak−1ak+1 for all

1 ≤ k < n.

A positive sequence (ak)0≤k≤n satisfying

a2
k ≥ ak−1ak+1 (2.23)

for all 1 ≤ k < n is called logarithmically concave or log-concave4 in short. For
example, the binomial coefficient

((
n
k

))
1≤k<n is log-concave because(

n
k

)2(
n
k−1

)(
n
k+1

) =
(k + 1)(n− k + 1)

k(n− k)
> 1.

4Also called “Turán inequalities”, named after Pál Turán [143] who found certain inequalities
for Legendre polynomials which was first published by Gábor Szegö [140] in 1948
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Stanley [135] and Brenti [31] have written extensive surveys of various techniques
that can be used to prove the real–rootedness of polynomials and log-concavity.
Now the question is why all of a sudden we use the terminology “log-concave” for a
positive sequence (ak)0≤k<n satisfying (2.23)? To answer this question, let us define
the notion of log-concavity of a function. A strictly positive function f : R → R is
called log-concave if it satisfies the inequality

f
(
tx+ (1− t)y

)
≥ f(x)tf(y)1−t (2.24)

for all x, y ∈ R and t ∈ [0, 1]. Observe that the sums and products of log-concave
functions are also log-concave. Now we show that a polynomial p(x) ∈ R[x] whose
all roots are real is a log-concave function. A polynomial p(x) having all roots real
can be expressed as

p(x) = an

d∏
i=1

(x− αi)mi := an

d∏
i=1

pi(x)mi ,

where pi(x) = x− αi,
∑d

i=1mi = n, and αi are the roots with multiplicity mi for all
1 ≤ i ≤ d. Define α := max

1≤i≤d
{αi} and so for all x > α, pi(x) > 0 for all 1 ≤ i ≤ d

and consequently, p(x) > 0. To show that p(x) is log-concave function for x ∈ R \α,
it remains to show that pi(x) is log-concave. By the weighted AM-GM inequality,
we have

tx+ (1− t)y − αi = t(x− αi) + (1− t)(y − αi) ≥ (x− αi)t(y − αi)1−t,

and therefore each pi(x) is log-concave. So, the polynomial p(x) is log-concave.
According to the assumption in Theorem 2.5.1, the polynomial p(x) =

∑n
k=0 akx

k

has only real roots and we have already shown that such a polynomial is a log-
concave function. Now Theorem 2.5.1 tells that the coefficient sequence (ak)0≤k≤n of
p(x) satisfies the inequality a2

k ≥ ak−1ak+1 for all 1 ≤ k < n and such a property is
called log-concave because the polynomial p(x) is a log-concave function.
The notion of log-concavity can be further generalized in the following way. Consider
the operator L defined on a sequence A := (an)n≥0 ⊂ R>0 by L(A) := A1 := (bn)n≥0

with
b0 = a2

0 and bn = a2
n − an−1an+1, for n ≥ 1.

Hence a sequence A is log-concave if and only if L(A) is a non-negative sequence.
A sequence is k-log-concave if j-fold applications of L on A, denoted by Lj(A),
is a non-negative sequence for all 0 ≤ j ≤ k. A sequence is called infinitely log-
concave if it is k-log-concave for all k ≥ 1. Brändén [29] proved that the sequence
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of binomial coefficients
((
n
k

))
0≤k≤n is infinitely log-concave for all n ≥ 0 which was

conjectured by Boros and Moll [28]. Considering the application of L on a polynomial
p(x) =

∑n
k=0 akx

k in the following way

L(p) :=
n∑
k=0

(a2
k − ak−1ak+1)xk,

Brändén [29] proved the following generalized version of Theorem 2.5.1.

Theorem 2.5.2. If p(x) =
∑n

k=0 akx
k is a polynomial with real and non-positive

zeros only, then so is L(p). In particular, the sequence (ak)0≤k≤n is infinitely log-
concave.

This theorem was independently conjectured by Fisk [63] and MacNamara-Sagan
[106]. Similar notions for higher order log-concavity were given by Craven and Csor-
das [48, 47].

Now let us look back at the premises of Theorems 2.5.1 and 2.5.2. To be precise,
in both Theorems 2.5.1 and 2.5.2, we assumed that all those polynomials are real-
rooted. But here two questions turn up. (1) How do we know a priori whether a
p(x) ∈ R[x] of degree n has all roots real or not? (2) What is the importance of
studying the previous question in mathematics? First, we proceed with the second
question. Let p1(x) := an+1x + an be a polynomial of degree 1 with its coefficient
sequence (an)n≥0 of real numbers. Then p1(x) has always one real root. Consider
the polynomial p2(x) := an+2x

2 + 2an+1x + an of degree 2 with coefficients (an)n≥0

of real numbers and observe that p2(x) has two real roots if and only if the sequence
(an)n≥0 is log-concave. The necessary and sufficient condition for real-rootedness of
the polynomial p3(x) := an+3x

3 +an+2x
2 +an+1x+an is that the coefficient sequence

(an)n≥0 satisfies the following inequality

4(a2
n+1 − anan+2)(a2

n+2 − an+1an+3) ≥ (an+1an+2 − anan+3)2, (2.25)

and we say (an)n≥0 satisfies the higher order Turán inequalities5. The inequalities
(2.23) and (2.25) share a deep connection with a certain class of functions, known as

Laguerre-Pólya class. A real entire function6 ψ(x) =
∑∞

n≥0

an
n!
xk is said to be in the

Laguerre-Pólya class, denoted by ψ(x) ∈ LP , if it has the following form

ψ(x) = cxme−αx
2+βx

∞∏
n=1

(
1 +

x

xn

)
e−x/xn , (2.26)

5Sometimes it is also stated as “Turán inequality of order 2
6An entire function (analytic on C) is said to be real if it takes real values on the real axis
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where c, β, xn are real numbers, α ≥ 0, m is a non-negative integer, and the series∑∞
n=1 x

−2
n is convergent. For example, consider the real entire function sinx. We

know that the sine function over C has the following infinite product representation7:

sinx = x

∞∏
n=1

(
1− x2

π2n2

)
.

Taking c = m = 1, α = β = 0, and xn = −π2n2, we have

sinx = x lim
N→∞

N∏
n=1

(
1− x2

π2n2

)
e−x/π

2n2

,

with
∑∞

n≥1(πn)−4 < ∞. This proves that sinx ∈ LP . For a more detailed study
on LP class of functions, we refer to [125]. Pólya and Schur [130] proved that the
Maclaurin coefficient sequence (an)n≥0 of ψ(x) ∈ LP is log-concave. Dimitrov [56]
showed that for ψ(x) ∈ LP , its coefficient sequence (an)n≥0 satisfies the higher order
Turán inequalities, which was first observed by Pólya and Schur [130]. Based on notes
of Jensen [80], Pólya and Schur [130] showed that the Riemann hypothesis8 is equiva-

lent to say that (−1+4z2)Λ
(

1
2

+z
)
∈ LP , where Λ(s) = π−s/2Γ(s/2)ζ(s) = Λ(1−s),

and ζ denotes the Riemann zeta function. In the language of roots of polynomials,
Pólya [121] proved that the Riemann hypothesis is equivalent to the real-rootedness
of the Jensen polynomial associated with the Taylor coefficients (γn)n≥0 defined by

Jd,nγ (x) :=
d∑
j=0

γn+jx
j (2.27)

for all positive integers n, and d, where (γn)n≥0 is defined by

ξ
(1

2
+ z
)

:=
∞∑
n=0

γn
n!
z2n.

The Riemann ξ-function is defined as ξ(s) := 1
2
s(s − 1)π−s/2Γ(s/2)ζ(s). Recently,

Griffin, Ono, Rolen, and Zagier [69] proved that Jd,nγ (x) has only real roots for all
positive integers d and for all sufficiently large n and based on this work, Griffin
et. al. [70] provided an estimate for the cut-off N(d) = ced (for some positive real

7See [136, P. 142, eq. (3)]
8For a detailed and rudimentary discussion on the Riemann hypothesis, we refer to [136, Chap.

6-7]
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number c) so that for all n ≥ N(d), Jd,nγ (x) has all real roots. We put an end to this
discussion by introducing another family of inequalities called Laguerre inequalities.
A polynomial p(x) is said to satisfy the Laguerre inequality if

p′(x)2 − p(x)p′′(x) ≥ 0. (2.28)

Laguerre [93] proved that if p(x) is a polynomial with only real zeroes, then p(x)
satisfies (2.28). In 1913, Jensen [80] found an nth generalization of the Laguerre
inequality

Ln(p(x)) :=
1

2

2n∑
k=0

(−1)n+k

(
2n

k

)
p(k)(x)p(2n−k)(x) ≥ 0, (2.29)

where p(k))(x) denotes the kth derivative of p(x). For n = 1, we get back (2.28).
Equivalence of the Riemann hypothesis in the context of higher-order Laguerre in-
equalities can be found in [49].
Finally, we conclude this section by discussing necessary and sufficient conditions for
the real-rootedness of a polynomial p(x). If p(x) is a polynomial of degree 2 or 3, then
non-negativity of the discriminant of p(x) (denoted by Discx(p)) is enough to show
that p(x) has two real roots or three real roots respectively. But for a polynomial,
say p(x) of degree d ≥ 4, Discx(p) ≥ 0 is not sufficient enough to prove that p(x) has
only real roots. On the other hand, if p(x) is real rooted, then Discx(p) ≥ 0. Let
p(x) := adx

d + · · · + a0 be a polynomial of degree d and α1, . . . , αd are the roots of
p(x). Hermite [113] proved that p(x) has all roots real if and only if

det


S0 S1 . . . Sm−1

S1 S2 . . . Sm
...

...
...

Sm−1 Sm . . . S2m−2

 ≥ 0

for all 2 ≤ m ≤ d, where Sk = αk1 + · · ·+ αkd.
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2.6 State of the art: inequalities for p(n)

In this section, we present only those inequalities for the partition function which fit
into the discussions in Section 2.5.
Independently, Nicolas [111] and DeSalvo-Pak [53] proved that (p(n))n≥26 is log-
concave. DeSalvo and Pak [53, Thm. 4.1-4.2] proved the following two companion
inequalities

p(n− 1)

p(n)

(
1 +

1

n

)
>

p(n)

p(n+ 1)
for all n ≥ 2,

and
p(n− 1)

p(n)

(
1 +

240

(24n)3/2

)
>

p(n)

p(n+ 1)
for all n ≥ 7.

Chen, Wang, and Xie [39, Sec. 2] proved that for all n ≥ 45,

p(n− 1)

p(n)

(
1 +

π√
24n3/2

)
>

p(n)

p(n+ 1)
,

conjectured by DeSalvo and Pak [53, Conj. 4.3]. DeSalvo and Pak [53, Thm. 5.1]
also proved the strong log-concavity of (p(n))n≥1 which states that for all n > m > 1,
we have

p(n)2 > p(n−m)p(n+m).

By extending the partition function to a multiplicative function on partitions, Bessen-
rodt and Ono [26, Thm. 2.1] obtained for any two positive integers a and b with
a+ b > 8, then

p(a)p(b) ≥ p(a+ b),

where equality holds only for {a, b} = {2, 7}. Hou and Zhang [79, Thm. 4.1] proved
that for any positive integer r, there exists an integer N(r) > 0 such that (p(n))n≥N(r)

is r-log-concave and consequently, proved that (p(n))n≥221 is 2-log-concave. A de-
terminantal approach for proving 2-log-concavity for (p(n))n≥221 was due to Jia and
Wang [82].
In 2019, Chen, Jia, and Wang [37, Thm. 1.3-1.4] showed that (p(n))n≥95 satisfies the
higher order Turán inequality and proposed that the Jensen polynomial associated
with p(n)

Jd,np (x) =
d∑
j=0

(
n

j

)
p(n+ j)xj

has only real roots for all d ≥ 4 and n > N(d), where N(d) is a positive integer
depending on the parameter d. For fixed degree d and for sufficiently large n, Griffin,
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Ono, Rolen, and Zagier [69, Thm. 5] proved that Jd,np (x) has only distinct and real
roots and moreover, conjectured the minimal values for N(d) with N(d) ≈ 10d2 log d.
Later Larson and Wagner [95, Thm. 1.1 and 1.3] computed that N(3) = 94, N(4) =
206, N(5) = 381, and proved that for all d ≥ 1, N(d) ≤ (3d)24d(50d)3d2 . In [95, Thm
1.2], they proved a companion inequality related to the higher order Turán inequality
for p(n), which states that for un := p(n+ 1)p(n− 1)/p(n)2 and for all n ≥ 2,

4(1− un)(1− un+1) <
(

1 +
π√

24n3/2

)
(1− unun+1)2,

conjectured by Chen-Jia-Wang [37]. Wang and Yang [149, Thm. 2.1] initiated the
study on Laguerre inequalities for p(n). They proved that (p(n))n≥184 satisfies the
Laguerre inequality of order 2. Wagner [145] proved that p(n) satisfies all the higher
order Laguerre inequalities of order m as n → ∞ and proposed a conjecture on
the (N(m))3≤m≤10 such that (p(n))n≥N(m) satisfies the Laguerre inequality of order
m. Dou and Wang [58] gave an explicit bound (N(m))3≤m≤10 and consequently,
confirmed the case m = 3 and 4 of Wanger’s conjecture.
Let us conclude with the real rootedness property of Jensen polynomials associated
with a broader class of sequences. The Hermite polynomial Hd(x) is defined by the
generating function [69, eq. 3]

∞∑
d=0

Hd(x)
td

d!
= e−t

2+xt = 1 + xt+ (x2 − 2)
t2

2!
+ (x3 − 6x)

t3

3!
+ . . . .

Due to Griffin, Ono, Rolen, and Zagier [69], we have the following result.

Theorem 2.6.1. Let (αn)n≥0, (An)n≥0, and (δn)n≥0 be three sequences of positive
real numbers with δn →

n→∞
0 and satisfying

log
(αn+j

αn

)
= Anj − δ2

nj
2 + o

(
δdn
)

as n→∞, (2.30)

for some integer d ≥ 1 and all 0 ≤ j ≤ d. Then we have

lim
n→∞

(
δ−dn
αn

Jd,nα

(
δnx− 1

eAn

))
= Hd(x), (2.31)

uniformly for x in any compact subset of R.

Since the Hermite polynomials Hd(x) has only distinct and real roots [141], the

normalized Jensen polynomial Jd,nα

(
δnx− 1

eAn

)
associated with the sequence (αn)n≥0
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has also only distinct and real roots. Following [69, Thm. 7], while having a Hardy-
Ramanujan-Rademacher type series expansion for a weakly holomorphic modular
from, say f , we can choose αn = af (n), where (af (n))n≥0 are Fourier coefficients of
f and consequently, determine an asymptotic expansion of the form

log
(af (n+ j)

af (n)

)
= Af (n)j − δ2

f (n)j2 + o
(
δdf (n)

)
as n→∞.

For example, we can choose (af (n))n≥0 arising from the Dedekind eta-quotients f
considered by Sussman [138] and Chern [41].
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2.7 Modified Bessel function of first kind

The theory of ordinary differential equations is one of the frequently celebrated topics
in the history of mathematics. Among many others, one such equation is Bessel’s
equation over the real domain, defined by

x2y′′ + xy′ + (x2 − ν2)y = 0, (2.32)

where ν is an arbitrary parameter. The solutions of this equation are termed the
Bessel functions. The theory of Bessel functions traces its root by sharing an intimate
connection with Riccati’s equation, named after Jacopo Riccati. Riccati investigated
certain curves whose radii of curvature are functions only of their ordinates and
subsequently came up with a non-linear first-order differential equation of the form

y′ + ay2 = bxα, (2.33)

where a and b are constants and α is not necessarily an integer. In 1694 John
Bernoulli came up with

y′ = x2 + y2, (2.34)

which is a particular form of (2.33), but was unable to solve it. James Bernoulli, the
older brother of John found a solution of (2.34) in the form of an infinite power series
in x. This solution appears to be the earliest example in the mathematical paradigm
of a result reducible to Bessel functions. These functions sailed off its journey along
the line of physical problems primarily related to mechanics, astronomy, and the
conduction of heat appeared in works of D. Bernoulli, Euler, Lagrange, Fourier, and
Poisson among many others. Bessel functions of the first kind, denoted as Jν(x),
are solutions of (2.32). For integer or positive real ν, Jν(x) is finite at x = 0 and
for negative non-integer ν, Jν(x) diverges as x → 0. The series expansion of Jν(x)
around x = 0 is given by:

Jν(x) =
∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(x
2

)2m+ν

, (2.35)

where Γ denotes the gamma function defined by:

Γ(z) :=

∫ ∞
0

e−ttz−1 dt for z ∈ C with Re(z) > 0.

Extending the function Jν(x) for the complex arguments z introduces the theory
of modified Bessel functions denoted by Iν(z) and Kν(z) which are two linearly
independent solutions of

z2y′′ + zy′ − (z2 + ν2)y = 0, (2.36)
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the so-called modified version of (2.32). Iν(z) is called the modified Bessel function
of the first kind and its series representation is

Iν(z) =
∞∑
m=0

(1
2
z)ν+2m

m!Γ(ν +m+ 1)
. (2.37)

By ratio test, one can easily show that the radius of convergence of the series on the
right hand side of (2.37) is infinite. In 1854 Kirchhoff [86] established an asymptotic
expansion of Iν(z): for fixed ν ∈ C,

Iν(z) ∼ ez√
2πz

(
1− 4ν2 − 1

8z
+

(4ν2 − 1)(4ν2 − 9)

2!(8z)2
− . . .

)
, | arg z| < π

2
. (2.38)

Inequalities related to Iν(x) with x ∈ R>0 have been studied to prove its several
properties like monotonicity, Turán inequalities, etc. But estimation of error bounds
for the asymptotic expansion of Iν(x) (2.38) has not been found until the work of
Bringmann, Kane, Rolen, and Tripp [32] appeared recently. Bringmann et. al. [32,
Lemma 2.2 (4)] proved that for ν ≥ 2 and x ≥ 1

120
(ν + 7

2
)6,∣∣∣∣∣Iν(x)

√
2πx

ex
−1+

4ν2 − 1

8x
−(4ν2 − 1)(4ν2 − 9)

128x2
+

(4ν2 − 1)(4ν2 − 9)(4ν2 − 25)

3072x3

∣∣∣∣∣ < 31ν8

6x4
.

(2.39)
Jia [81, Thm. 2.1] considered the truncation point N = 5 and proved that for all
ν ≥ 2 and x ≥ 1

120
(ν + 7

2
)6,

∣∣∣∣∣Iν(x)
√

2πx

ex
−

5∑
i=0

(−1)i

i∏
j=0

(
−j + ν − 1

2
+ 1
)(
j + ν +

1

2
− 1
)

(2x)i

∣∣∣∣∣
≤ 52e−x

17Γ(ν + 1
2
)

5∑
i=0

∣∣∣∣∣
(
ν − 1

2

i

)∣∣∣∣∣xν−
1
2

2i
+

e−xxν+ 1
2

2ν−
1
2 Γ(ν + 1

2
)
+

∣∣∣∣∣
5∏
i=0

(
ν2 − (2i+ 1)2

4

)
6!2ν−

1
2x6

∣∣∣∣∣max
{

2ν−
13
2 , 1
}
.

(2.40)

For a more detailed study of the theory of modified Bessel functions, we refer the
reader to Watson’s monumental treatise [150].
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Part II

Asymptotic inequalities
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Chapter 3

New inequalitites for the partition
function and logarithm of the
partition function

Let p(n) denote the number of partitions of n. A new infinite family of inequalities
for p(n) is presented. This generalizes a result by William Chen et al. From this
infinite family, another infinite family of inequalities for log p(n) is derived. As an
application of the latter family one, for instance obtains that for n ≥ 120,

p(n)2 >
(

1 +
π√

24n3/2
− 1

n2

)
p(n− 1)p(n+ 1).

3.1 On the asymptotic growth of p(n)

We denote by p(n) the number of partitions of n. The first 50 values of p(n) starting
from n = 0 read as follows,

1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,490,

627,792,1002,1255,1575,1958,2436,3010,3718,4565,5604,6842,

8349,10143,12310,14883,17977,21637,26015,31185,37338,44583,

53174,63261,75175,89134,105558,124754,147273,173525.

A well-known asymptotic formula for p(n) was found by G.H. Hardy and Srinivasa
Ramanujan [76] in 1918 and independently by James Victor Uspensky in 1920 [144]:

p(n) ∼ 1

4n
√

3
eπ
√

2n
3 . (3.1)
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An elementary proof of (3.1) was given by Paul Erdős [60] in 1942. At MICA 2016
(Milestones in Computer Algebra) held in Waterloo in July 2016, Zhenbing Zeng
et al. [133] reported that using numerical analysis they found a better asymptotic
formula1 for p(n) by searching for constants Ci,j to fit the following formula,

log p(n) = π

√
2

3

√
n− log n− log(4

√
3) +

C0,−1

log n
+
C1,0√
n

+
C1,−1√
n log(n)

+
C2,1 log n

n
+
C2,0

n
+ · · · . (3.2)

By substituting for n = 210, 211, . . . , 220 into (3.2) they obtained,

C0,−1 = 0, C1,0 = −0.4432 . . . , C1,−1 = 0, C2,1 = 0, C2,0 = −0.0343 . . . .

The OEIS [134] for A000041 shows that a similarly refined asymptotic formula for
p(n) was discovered by Jon E. Schoenfield in 2014, this reads

p(n) ∼ 1

4n
√

3
e
π·( 2n

3
+c0+

c1√
n

+
c2
n

+
c3
n
√
n

+
c4
n2

+...)
1
2
, (3.3)

where the coefficients are approximately

c0 = −0.230420 . . . , c1 = −0.017841 . . . , c2 = 0.005132 . . . ,

c3 = −0.001112 . . . , c4 = 0.000957 . . . ,

Later Vaclav Kotesovec according to OEIS [134] for A000041 got the precise value
of c0, c1, . . . , c4 as follows:

c0 = − 1

36
− 2

π2
, c1 =

1

6
√

6π
−
√

6

2π3
, c2 =

1

2π4
,

c3 = − 5

16
√

6π3
+

3
√

6

8π5
, c4 =

1

576π2
− 1

24π4
+

93

80π6
.

To the best of our knowledge, the details of the methods of Schoenfield and Kotesovec
have not yet been published.

1In the literature, the Hardy-Ramanujan-Rademacher is also called an asymptotic for-
mula/approximation. However, it is built by an expression of substantially more complicated type.
For example, the log concavity of p(n) follows nontrivially from it, as shown in the work of DeSalvo
and Pak [53].
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In this chapter, using symbolic-numeric computation, we present our method to
derive (3.2) together with a closed form formula for the Ci,j in (3.2). Namely we
show that

log p(n) ∼ π

√
2n

3
− log n− log 4

√
3 +

∞∑
u=1

gu√
n
u ,

where the gu are as in Definition 3.5.1. By ∼ in the above expression we mean that
for each N ≥ 1

log p(n) = π

√
2n

3
− log n− log 4

√
3 +

N−1∑
u=1

gu√
n
u +ON(n−N/2).

In particular Ci,j = 0, if j 6= 0, and Ci,0 = gi, otherwise. This result is obtained as
a consequence of an infinite family of inequalities for log p(n), Theorem 3.6.6 (main
theorem). We also apply our method to conjecture an analogous formula to (3.2) for
a(n), the cubic partitions of n, with a(n) given by

∞∑
n=0

a(n)qn =
∞∏
n=1

1

(1− qn)(1− q2n)
. (3.4)

In the OEIS, this sequence is registered as A002513. The first 50 values of a(n),
n ≥ 0, are

1,1,3,4,9,12,23,31,54,73,118,159,246,329,489,651,940,

1242,1751,2298,3177,4142,5630,7293,9776,12584,16659,

21320,27922,35532,46092,58342,75039,94503,120615,

151173,191611,239060,301086,374026,468342,579408.

This sequence appears in a letter from Richard Guy to Morris Newman [73]. In
[38], William Chen and Bernard Lin proved that the sequence a(n) satisfies several
congruence properties. For example, a(3n + 2) ≡ 0 (mod 3), a(25n + 22) ≡ 0
(mod 5). An asymptotic formula for a(n) was obtained by Kotesovec [91] in 2015 as
follows:

a(n) ∼ eπ
√
n

8n5/4
. (3.5)

In [155] the fourth author investigated the combinatorial properties of the sequence
a(n) by using Maple.

We summarize some of our main results:

Theorem 3.1.1. For the usual partition function p(n) we have

log p(n) ∼ π

√
2n

3
− log n− log 4

√
3− 0.44 . . .√

n
, n→∞. (3.6)
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The proof of this theorem will be given in Section 3.6.

Conjecture 3.1.2. For the cubic partitions a(n) we have

log a(n) ∼ π
√
n− 5

4
log n− log 8− 0.79 . . .√

n
, n→∞. (3.7)

Theorem 3.1.3. For the partition numbers p(n) we have the inequalities

eπ
√

2n
3

4
√

3n

(
1− 1

2
√
n

)
< p(n) <

eπ
√

2n
3

4
√

3n

(
1− 1

3
√
n

)
, n ≥ 1.

The proof of this is given in Section 3.3.
This chapter is organized as follows. In Section 3.2 we present the methods used

in the mathematical experiments that led us Theorem 3.1.1 and Conjecture 3.1.2.
In Section 3.3 we prove Theorem 3.1.3 by adapting methods used by Chen et al.
to fit our purpose. In Section 3.4 we generalize an inequality by Chen et al. by
extending it to an infinite family of inequalities for p(n). In Section 3.5 we introduce
preparatory results required to prove Theorem 3.6.6. In Section 3.6 we prove our
main result, Theorem 3.6.6, by using the main result from Section 3.4, Theorem
3.4.4. This gives an infinite family of inequalities for log p(n). Finally in Section 3.7
we give an application of the results in Section 3.5 which extends DeSalvo’s and Pak’s
log concavity theorem for p(n). In Section 3.8 (the Appendix) we give additional
information on the method used to discover the asymptotic formulas. We remark
explicitly that to finalize the proof of Theorem 3.6.6, we use the Cylindrical Algebraic
Decomposition in Mathematica; the details of this are also put to Section 3.8.

3.2 Mathematical experiments for better asymp-

totics for a(n) and p(n)

Before proving our theorems, in this section we briefly describe the experimental
mathematics which led us to their discovery. Our strategy is as follows. If we
have sufficiently many instances of a given sequence, how can we find an asymptotic
formula for this sequence? Take the cubic partitions a(n) and the partition numbers
p(n) as examples.

We have

p(10) = 42, . . . , p(100) = 190569292, . . . , p(1000) = 24061467864032622473692149727991,
a(10) = 118, . . . , a(100) = 16088094127, . . . ,
a(1000) = 302978131076521633719614157876165279276.
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A plot of the two curves through the points (n, a(n)), resp. (n, p(n)), for n ∈
{1, . . . , 1000} are shown in the Fig. 3.1(a) and 3.1(b). According to the Hardy-
Ramanujan Theorem 3.1 and the asymptotic formula of Kotesovec (3.5), the curves
are increasing with “sub-exponential” speeds. Thus, we may plot two curves using
data points (n, log a(n)) and (n, log p(n)) as in Fig. 3.1(c). One observes that the
new curves look like parabolas y =

√
x. This is also very natural in view of,

log p(n) ∼
√

2

3
π ·
√
n− log n− log 4

√
3,

log a(n) ∼ π ·
√
n− 5

4
· log n− log 8. (3.8)

So if we modify further with (
√
n, log a(n)) and (

√
n, log p(n)) to plot the curves, we

get two almost-straight lines as shown in the Fig. 3.1(d).
This provides the starting point for finding the improved asymptotic formulas

(3.6) for p(n) and (3.7) for a(n) from their data sets. We restrict our description to
the latter case. Motivated by (3.8), we compute the differences of log a(n) with the

estimation values ae(n) := eπ
√
n

8n5/4 :

∆(n) := log ae(n)− log a(n) = π
√
n− 5

4
log n− log 8− log a(n).

Then we can plot curves from the data points (n,∆(n)) in Fig. 3.2(a) and 3.2(b),
and (n, n ·∆(n)) and (n,

√
n ·∆(n)) in Fig. 3.2(c) and 3.2(d), in order to confirm the

next dominant term approximately. We can see in Fig. 3.2(d) that after multiplying
∆(n) by

√
n the curve is almost constant, confirming that the next term is C√

n
. Also

multiplying ∆(n) by n, in Fig. 3.2(c) we see that the behaviour is like
√
n as expected.

By using least square regression on the original data set (n, a(n)) for 1 ≤ n ≤ 10000,
we aimed at finding the best constant C that minimizes 2

− log a(n) + α ·
√
n− β · log n− log γ +

C√
n
,

where we fixed α = π, β = 5/4, γ = 8 according to (3.5). As a result, we obtained
that C ≈ 0.7925.

In the Appendix, Section 3.8, we explain that the constants α, β, γ can also be
found via regression analysis with Maple instead of getting them from (3.5) directly.

2The fourth author of the paper [22] told the result to V. Kotesovec in May 2016 and got a reply
in January 2017 that the precise value of C could be Pi/16+15/(8*Pi)=0.7931...
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(a) (b)

(c) (d)

Figure 3.1: In (a) p(n) is plotted and in (b) a(n) is plotted. In (c) the upper
curve is {(n, log a(n))|1 ≤ n ≤ 1000}, and the lower curve is {(n, log p(n))|1 ≤ n ≤
1000}. The two curves are like the parabola y =

√
x. In (d) the two lines are for

{(
√
n, log a(n))|1 ≤ n ≤ 1000} (upper) and {(

√
n, log p(n))|1 ≤ n ≤ 1000} (lower).
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(a) (b)

(c) (d)

Figure 3.2: The curve in (a) is for (n,∆(n)) where 1 ≤ n ≤ 10000, (b) is for
(n,∆(n)) where 1 ≤ n ≤ 100. The curve in (c) is for (n, n · ∆(n)), and (d) is for
(n,
√
n ·∆(n)) where 1 ≤ n ≤ 10000.
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3.3 An inequality for p(n)

We separate the proof into two lemmas. The first lemma is the upper bound for p(n)
and second lemma is the lower bound. In order to prove these lemmas we will state
several facts which are routine to prove.

Lemma 3.3.1. For all n ≥ 1, we have

p(n) <
eπ
√

2n
3

4
√

3n

(
1− 1

3
√
n

)
.

Proof. By [37, (2.7)-(2.8)] and with Ak(n) and R(n,N)3 as defined there, we have,

p(n) =

√
12

24n− 1

N∑
k=1

Ak(n)√
k

[(
1− k

µ(n)

)
e
µ(n)
k +

(
1 +

k

µ(n)

)
e−

µ(n)
k

]
+R(n,N), n ≥ 1,

where
µ(n) :=

π

6

√
24n− 1.

We will exploit the case N = 2 together with A1(n) = 1 and A2(n) = (−1)n for any
positive integer n. For N ≥ 1, Lehmer [98, (4.14), p. 294] gave the following error
bound:

|R(n,N)| < π2N−2/3

√
3

[( N

µ(n)

)3

sinh
µ(n)

N
+

1

6
−
( N

µ(n)

)2]
, n ≥ 1, (3.9)

and for N = 2 (cf. [37, (2.9)-(2.10)]):

p(n) =

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+ T1(n)

)
, n ≥ 1, (3.10)

where

T1(n) :=
(−1)n√

2

((
1− 2

µ(n)

)
e−

µ(n)
2 +

(
1 +

2

µ(n)

)
e−

3µ(n)
2

)
+
(

1 +
1

µ(n)

)
e−2µ(n) +

(24n− 1)R(n, 2)√
12eµ(n)

.

3Note that in [37] R(n,N) is denoted by R2(n,N).
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We first estimate the absolute value of T1(n); for convenience we denote subexpres-
sions by a1, b1, c1 and d1:

|T1(n)| ≤ 1√
2

(
1− 2

µ(n)

)
e−

µ(n)
2︸ ︷︷ ︸

=:a1

+
1√
2

(
1 +

2

µ(n)

)
e−

3µ(n)
2︸ ︷︷ ︸

=:b1

+
(

1 +
1

µ(n)

)
e−2µ(n)︸ ︷︷ ︸

=:c1

+
∣∣∣(24n− 1)R(n, 2)√

12eµ(n)

∣∣∣︸ ︷︷ ︸
=:d1

.

The following facts are easily verified.

Fact A. For all n ≥ 1, a1 < e−
µ(n)
2 .

Fact B. For all n ≥ 1, b1 < e−
µ(n)
2 .

Fact C. For all n ≥ 1, c1 < e−
µ(n)
2 .

Now,

d1 =
36

π2
√

12

µ(n)2

eµ(n)
|R(n, 2)|

<
µ(n)2e−µ(n)

22/3
+

12 3
√

2e−
µ(n)
2

µ(n)
− 12 3

√
2e−

3µ(n)
2

µ(n)
− 12

3
√

2e−µ(n) (by (3.9))

<
µ(n)2e−µ(n)

22/3︸ ︷︷ ︸
=:d∗1

+
12 3
√

2e−
µ(n)
2

µ(n)︸ ︷︷ ︸
=:d∗2

.

Fact D. For all n ≥ 7, d∗1 < e−
µ(n)
2 .

Fact E. For all n ≥ 35, d∗2 < e−
µ(n)
2 .

By Fact D and Fact E, we have

Fact F. d1 = d∗1 + d∗2 < 2e−
µ(n)
2 for all n ≥ 35.

Now, by Facts A, B, C and Fact F we conclude that for all n ≥ 35,

|T1(n)| ≤ a1 + b1 + c1 + d1 < 5e−
µ(n)
2 . (3.11)

By (3.11), we have for all n ≥ 35 that

1− 1

µ(n)
− 5e−

µ(n)
2 < 1− 1

µ(n)
+ T1(n) < 1− 1

µ(n)
+ 5e−

µ(n)
2 . (3.12)
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Fact G. For all n ≥ 3, 1− 1
µ(n)
− 5e−

µ(n)
2 > 0.

Therefore from (3.10), (3.12) and Fact G, we have for all n ≥ 35,

p(n) =

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+ T1(n)

)
<

√
12eµ(n)

24n− 1︸ ︷︷ ︸
=:e1

(
1− 1

µ(n)
+ 5e−

µ(n)
2

)
︸ ︷︷ ︸

=:f1

. (3.13)

Fact H. f1 < 1− 1
3
√
n

for all n ≥ 23.

Fact I. e1 <
1

4n
√

3
eπ
√

2n
3 for all n ≥ 1.

Therefore by Facts H, I and (3.13) we have for all n ≥ 35,

p(n) <
1

4n
√

3
eπ
√

2n
3

(
1− 1

3
√
n

)
.

This completes the proof of the stated upper bound in Lemma 3.3.1.

Lemma 3.3.2. For all n ≥ 1,

1

4n
√

3
eπ
√

2n
3

(
1− 1

2
√
n

)
< p(n). (3.14)

Proof. In the proof of [53, Prop 2.4], it is noted that for all n ≥ 1,

p(n) > T2(n)
(

1− |R(n)|
T2(n)

)
,

where

T2(n) :=

√
12

24n− 1

[(
1− 1

µ(n)

)
eµ(n) +

(−1)n√
2
e
µ(n)
2

]
and R(n) is as in [53, (7)].

From the definition of T2(n) one verifies:

Fact J. T2(n) > 0 for all n ≥ 1.

The following bound holds for |R(n)| (see [53, (13)]),

0 <
|R(n)|
T2(n)

< e−
π
10

√
2n
3 , n ≥ 2.
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Hence by Fact J,

T2(n)
(

1− |R(n)|
T2(n)

)
> T2(n)

(
1− e−

π
10

√
2n
3

)
, n ≥ 2. (3.15)

Plugging the definition of T2(n) into (3.15) gives for n ≥ 2,

p(n) >

√
12

24n− 1

[(
1− 1

µ(n)︸ ︷︷ ︸
=:a2

)
eµ(n) +

(−1)n√
2
e
µ(n)
2

]
(1− e−

π
10

√
2n
3 )︸ ︷︷ ︸

=:d2

>

√
12

24n
eπ
√

2n
3

[
a2 × eµ(n)−π

6

√
24n︸ ︷︷ ︸

=:b2

+
(−1)n√

2
e
µ(n)
2
−π

6

√
24n︸ ︷︷ ︸

=:c2

]
× d2

=
1

4
√

3n
eπ
√

2n
3 (a2b2 + c2)d2.

We now bound a2, b2, c2, and d2:

Fact K. a2 > 1− 2
5
√
n
> 0 for all n ≥ 1.

Fact L. b2 > 1− 2
37
√
n
> 0 for all n ≥ 1.

Fact M. c2 > − 1
225
√
n

for all n ≥ 29.

Fact N. d2 > 1− 1
25
√
n
> 0 for all n ≥ 631.

By Facts K, L and M we have,

Fact O. a2b2 + c2 > (1− 2
5
√
n
)(1− 2

37
√
n
)− 1

225
√
n
> 0 for all n ≥ 1.

From Facts O and N we have for all n ≥ 631,

(a2b2 + c2)d2 >
[(

1− 2

5
√
n

)(
1− 2

37
√
n

)
− 1

225
√
n

](
1− 1

25
√
n

)
︸ ︷︷ ︸

=:I(n)

.

Fact P. I(n) > 1− 1
2
√
n
> 0, for all n ≥ 1.

From all the above facts we can conclude that (3.14) holds for all n ≥ 631. Using
Mathematica we checked that (3.14) also holds for all 1 ≤ n ≤ 630. This concludes
the proof of Lemma 3.3.2.

Finally, combining Lemma 3.3.1 and Lemma 3.3.2, we have Theorem 3.1.3.
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3.4 A generalization of a result by Chen, Jia, and

Wang

In this section we have again that µ(n) = π
6

√
24n− 1; this should not be confused

with the real variable µ which we will use below. Eventually, we will set the real
variable µ equal to µ(n). The main goal of this section is to generalize [37, Lem. 2.2]
which says that for n ≥ 1206, we have

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)10

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)10

)
.

Our improvement is Theorem 3.4.4 where we replace the 10 in this formula by k and
the 1206 by a parametrized bound g(k). In order to achieve this, for a fixed k one
needs to find an explicit constant ν(k) ∈ R such that 1

6
eµ/2 > µk for all µ ∈ R with

µ > ν(k). One can show that

ν̃(k) := min
{
h ∈ R

∣∣∀µ∈R(µ > h⇒ 1

6
eµ/2 > µk

)}
satisfies 1

6
eν̃(k)/2 = ν̃(k)k. Theorem 3.4.4 is crucial for proving our main result,

Theorem 3.6.6, presented in the next section. In Lemma 3.4.1 we find such a constant
ν(k) for all k ≥ 7. In Lemma 3.4.2 we find a lower bound on ν̃(k). In this way, we
see that what is delivered by Lemma 3.4.1, is best possible in the sense that our ν(k)
from Lemma 3.4.1 and the minimal possible ν̃(k) satisfies |ν(k) − ν̃(k)| < 3k log log k

log k

for all k ≥ 7.

Lemma 3.4.1. For k ≥ 7 let

ν(k) := 2 log 6 + (2 log 2)k + 2k log k + 2k log log k +
5k log log k

log k
,

then
1

6
· eν(k)/2 > ν(k)k, k ≥ 7. (3.16)

Moreover, if µ > ν(k) for some k ≥ 7, then

1

6
· eµ/2 > µk, k ≥ 7. (3.17)

Proof. Let f(µ) := − log 6 + µ/2 − k log µ. By f ′(µ) = 1/2 − k/µ, f is increasing
for µ > 2k. Hence the fact ν(k) > 2k gives f(µ) > f(ν(k)), and (3.17) follows
from (3.16) which is equivalent to f(ν(k)) > 0, k ≥ 7. We set

ν(k) := −1 +
ν(k)

2k log k
=

log 6

k log k
+

log 2

log k
+

log log k

log k
+

5 log log k

2(log k)2
.
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The positivity of f(ν(k)) is shown as follows:

f(ν(k)) = − log 6 + ν(k)/2− k log(2k log k)− k log(1 + ν(k))

=
5k log log k

2 log k
− k log(1 + ν(k))

> k
(5 log log k

2 log k
− ν(k)

)
(by log(1 + x) < x for 0 < x)

=
k

2 log k

(
3 log log k − 2 log 6

k
− 2 log 2− 5 log log k

log k

)
>

k

2 log k

(
3 log log k − 1

5
− 7

5
− 2
)

=
k

2 log k

(
3 log log k − 18

5

)
.

The last inequality holds for all k ≥ 18, because for such k:

2 log 6

k
<

1

5
,
5 log log k

log k
< 2, and 2 log 2 <

7

5
.

It is also straight-forward to prove log log k > 6/5 for all k ≥ 28. For the the re-
maining cases 7 ≤ k ≤ 27 the inequality (3.16) is verified by numerical computation,
which completes the proof of Lemma 3.4.1.

Lemma 3.4.2. For k ≥ 7 let

κ(k) := 2 log 6 + (2 log 2)k + 2k log k + 2k log log k +
2k log log k

log k
.

Then we have
1

6
eκ(k)/2 < κ(k)k.

Proof. Let f defined as in Lemma 3.4.1, then the statement is equivalent to proving
that

f(κ(k)) = − log 6 +
κ(k)

2
− k log κ(k) < 0.

Setting

κ̃(k) := −1 +
κ(k)

2k log k
=

log(6)

k log k
+

log 2

log k
+

log log k

log k
+

log log k

(log k)2

we observe that

f(κ(k)) =− log 6 + κ(k)/2− k log(2k log k)− k log(1 + κ̃(k))

=
2k log log k

2 log k
− k log(1 + κ̃(k))

<
k log log k

log k
− k(κ̃(k)− κ̃(k)2/2),
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because of log(1 + x) > x− x2/2 for x ∈ R>0.

In order to show f(κ(k)) < 0, it would be enough therefore to show that 2
(
κ̃(k)−

log log k
log k

)
> κ̃2 below. We have

2
log 6 log k + (log 2)k log k + k log log k

k(log k)2

>
( log 6 log k + (log 2)k log k + k(log log k) log k + k log log k

k(log k)2

)2

,

which is equivalent to the inequality

2 log k
( log 6

k
+ log 2 +

log log k

log k

)
> (log log k)2

( log 6

k log log k
+

log 2

log log k
+ 1 +

1

log k

)2

.

Since

2 log k
( log 6

k
+ log 2 +

log log k

log k

)
> (2 log 2) log k >

5

4
log k, k ≥ 3,

it suffices to show

5

4
log k > (log log k)2

( log 6

k log log k
+

log 2

log log k
+ 1 +

1

log k

)2

,

which after division by (log log k)2 gives the equivalent inequality

5

4

log k

(log log k)2
>
( log 6

k log log k
+

log 2

log log k
+ 1 +

1

log k

)2

.

Now note that log k
(log log k)2

is increasing and the right-hand side of the above inequality is

decreasing for k ≥ dee2e = 1619. Evaluating both sides at k = ee
2

gives 5
4
e2

4
> 23

10
for

the left, and
(

1+ 1
e2

+ log 2
2

+ log 6

2ee2

)2

< 22
10

for the right side. This proves the inequality

for k ≥ 1619. For 7 ≤ k ≤ 1618 the result follows by numerical evaluation.

Definition 3.4.3. For k ≥ 2 define

g(k) :=
3

2π2
(ν(k)2 + 1),

where ν(k) is as in Lemma 3.4.1.

50



Theorem 3.4.4. For all k ≥ 2 and n > g(k) such that (n, k) 6= (6, 2) we have
√

12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)k

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)k

)
. (3.18)

Proof. From [37, p. 8, (2.9)] we find that

p(n) =

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+ T (n)

)
for n ≥ 1,

where T (n) is defined in [37, (2.10)]. In [37, (2.22)] it is proven that

|T (n)| < 6e−
µ(n)
2 for n > 350. (3.19)

By Lemma 3.4.1 we have that µ(n)k < 1
6
e
µ(n)
2 for k ≥ 7 and µ(n) > ν(k), which is

equivalent to

6e−
µ(n)
2 <

1

µ(n)k
, for µ(n) > ν(k). (3.20)

Since µ(n) = π
6

√
24n− 1, it follows that µ(n) > ν(k) if and only if n > g(k).

Furthermore for k ≥ 7, we have g(k) > 350, this means that (3.19) is satisfied for
n > g(k).

By (3.19) and (3.20) we obtain that |T (n)| < 1
µ(n)k

for n > g(k) which proves that

statement for k ≥ 7. To prove the statement for k ∈ {2, . . . , 6} we use the statement
for k = 7 which says that for all n ≥ dg(7)e = 581 we have

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)7

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)7

)
.

However

p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)7

)
<

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)k

)
(3.21)

for k ∈ {2, . . . , 6} and n ≥ 581. To prove (3.21) for g(k) < n < 581 it is enough to
do a numerical evaluation of (3.21) for these values of n with the exception n = 6
when k = 2. We did this using computer algebra. Analogously, we see that for
k ∈ {2, . . . , 6} and n ≥ 581 we have
√

12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)k

)
<

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)7

)
< p(n). (3.22)

In the same way we prove (3.22) for g(k) < n < 581.
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3.5 Set up

In this section we prepare for the proof of our main theorem, Theorem 3.6.6, which
is presented in Section 3.6. To this end, we need to introduce a variety of lemmas.

Definition 3.5.1. For y ∈ R, 0 < y2 < 24, we define

G(y) := − log

(
1− y2

24

)
+

π

6y

√
24

(√
1− y2

24
− 1

)
+ log

(
1− y

π
6

√
24− y2

)
,

and its sequence of Taylor coefficients by

∞∑
u=1

guy
u := G(y).

Definition 3.5.2. For 0 < y2 < 24 and i ∈ {−1, 1}, define

Gi,k(y) := G(y) + log

1 +

i

(
y

π
6

√
24−y2

)k
1− y

π
6

√
24−y2

 .

Lemma 3.5.3. Let g(k) be as in Definition 3.4.3. Then for all k ≥ 2 and n > g(k)
with (k, n) 6= (2, 6) we have

− log 4
√

3− log n+ π

√
2n

3
+G−1,k(1/

√
n) < log p(n) <

− log 4
√

3− log n+ π

√
2n

3
+G1,k(1/

√
n).

Proof. Taking log of both sides of (3.18) gives

logE−1,k(n) < log p(n) < logE1,k(n)

where

Ei,k(n) := log
√

12− log(24n− 1) + µ(n) + log
(

1− 1

µ(n)
+

i

µ(n)k

)
.
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Now

Ei,k(n) = log

√
12

24
− log n− log

(
1− 1

24n

)
+ π

√
2n

3
+ µ(n)

− π

6

√
24n+ log

(
1− 1

µ(n)
+

i

µ(n)k

)
=− log 4

√
3− log n+ π

√
2n

3
+Ri,k(n),

where

Ri,k(x) := − log

(
1− 1

24x

)
+ µ(x)− π

6

√
24x+ log

(
1− 1

µ(x)
+

i

µ(x)k

)
.

Finally one verifies that Ri,k(x) = Gi,k(1/
√
x).

The quantity

α :=
π2

36 + π2

will play an important role in this and the next section.

Lemma 3.5.4. Let G(y) =
∑∞

u=1 guy
u be the Taylor series expansion of G(y) as in

Definition 3.5.1. Then

g2n =
1

3n23nn
− 1

23n+13nn

(
−1 +

1

αn

)
, n ≥ 1, (3.23)

and for n ≥ 0,

g2n+1 =
√

6

[
(−1)n+1

(
1/2

n+ 1

)
π

23n+33n+2
− 1

23n+13nαn(1 + 2n)π

n∑
j=0

αj
(
−1

2
+ j

j

)]
.

(3.24)

Proof. By using

log

(
1− y

π
6

√
24− y2

)
= −

∞∑
k=1

ykk−1π−k6k24−k/2

(
1−

(
y√
24

)2
)−k/2

,

together with (
1−

(
y√
24

)2
)−k/2

=
∞∑
n=0

(−1)n
(
−k/2
n

)(
y√
24

)2n

,
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we obtain

g2n =
1

3n23nn
−

n−1∑
u=0

1

32u−n2n+2uπ2n−2u(2n− 2u)
(−1)u

(
u− n
u

)
, n ≥ 1.

For n ≥ 0,

g2n+1 =
√

6
[
(−1)n+1

(
1/2

n+ 1

)
π

23n+33n+2

−
n∑
u=0

1

32u−n2n+1+2uπ2n+1−2u(2n+ 1− 2u)
(−1)u

(
u− n− 1/2

u

)]
.

Inputting this into the package Sigma developed by Carsten Schneider [128], we
obtain (3.23) and (3.24).

We need various additional facts about the Taylor coefficients gu of G(y).

Lemma 3.5.5. For 0 ≤ a < 1,

a

2
≤

n∑
j=1

aj
(
j − 1/2

j

)
≤ a

2(1− a)
.

Proof. First we note that
(
j−1/2
j

)
= (−1)j

(− 1
2
j

)
> 0. Hence

n∑
j=1

aj
(
j − 1

2

j

)
=

n∑
j=1

(−a)j
(
−1

2

j

)
=

n∑
j=0

(−a)j
(
−1

2

j

)
− 1

<
∞∑
j=0

(−a)j
(
−1

2

j

)
− 1 =

1√
1− a

− 1 ≤ a

2(1− a)
.

This proves the upper bound. To prove the lower bound note that the first term of
the sum is a

2
and the other terms are all positive.

Lemma 3.5.6. Let sn := (−1)n
(

1/2
n+1

)
. For n ≥ 0 we have sn ≥ 0 and sn is a

decreasing sequence, that is sn > sn+1 for all n ≥ 0.

Lemma 3.5.7. For n ≥ 0 we have

−
√

6

2π23n3nαn(1 + 2n)

(
1 +

α

2

)
≥ g2n+1 ≥ −

√
6

2π23n3nαn(1 + 2n)

(
π2

72
+ 1 +

α

2(1− α)

)
.
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Proof. From Lemma 3.5.4, Lemma 3.5.5 and Lemma 3.5.6 we obtain

−
√

6

2π23n3nαn(1 + 2n)

(
1 +

α

2

)
≥ g2n+1.

Again by Lemma 3.5.4, Lemma 3.5.5 and Lemma 3.5.6 we have:

g2n+1 ≥−
√

6

23n3n

( π
72

(−1)0+1

(
1/2

0 + 1

)
+

1 + α
2(1−α)

2παn(1 + 2n)

)
=−

√
6

2π23n3nαn(1 + 2n)

(π2αn(1 + 2n)

72
+ 1 +

α

2(1− α)

)
≥−

√
6

2π23n3nαn(1 + 2n)

(π2α0(1 + 2 · 0)

72
+ 1 +

α

2(1− α)

)
.

The last line is because αn(1 + 2n) is a decreasing sequence of n for n ≥ 0.

Lemma 3.5.8. For n ≥ 1 we have

− 1

3n23n+1nαn
≤ g2n ≤

1

3n23nnαn

(3α

2
− 1

2

)
.

Proof. By Lemma 3.5.4 the statement follows from

g2n =
1

3n23nn
− 1

23n+13nn

(
−1 +

1

αn

)
=

1

3n23nαnn

(3αn

2
− 1

2

)
.

Lemma 3.5.9. Define

µ1 :=

√
6

2π

(π2

72
+ 1 +

α

2(1− α)

)
and µ2 :=

√
6

2π

(
1 +

α

2

)
.

Then for m ≥ 0 and 0 < y ≤ ε < 2
√

6α,

− µ2

23m3mαm(1 + 2m)
y2m+1 ≥

∞∑
n=m

g2n+1y
2n+1 ≥ − µ1

23m3mαm(1 + 2m)

1

1− ε2

3α·23
y2m+1.

Proof. By Lemma 3.5.7 we have

∞∑
n=m

g2n+1y
2n+1 ≥− µ1

∞∑
n=m

1

23n3nαn(1 + 2n)
y2n+1 ≥ −µ1y

2m+1

1 + 2m

∞∑
n=0

1

23(n+m)3n+mαn+m
y2n

=− µ1y
2m+1

23m3mαm(1 + 2m)

1

1− y2

3α·23
≥ − µ1

23m3mαm(1 + 2m)

1

1− ε2

3α·23
y2m+1,
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and again by Lemma 3.5.7 we have

∞∑
n=m

g2n+1y
2n+1 ≤ −µ2

∞∑
n=m

y2n+1

23n3nαn(1 + 2n)
≤ −µ2

y2m+1

23m3mαm(1 + 2m)
.

Lemma 3.5.10. For m ≥ 1 and 0 < y ≤ ε < 2
√

6α,

3α− 1

3m23m+1mαm
y2m ≥

∞∑
n=m

g2ny
2n ≥ −y2m 1

3m23m+1mαm
1

1− ε2

3·23·α

.

Proof. By Lemma 3.5.8,

∞∑
n=m

g2ny
2n ≥− 1

2

∞∑
n=m

1

3n23nnαn
y2n ≥ −y2m1

2

∞∑
n=m

1

3n23nmαn
y2n−2m

=− y2m 1

3m23m+1mαm
1

1− y2

3·23·α

≥ −y2m 1

3m23m+1mαm
1

1− ε2

3·23·α

.

Again by Lemma 3.5.8,

∞∑
n=m

g2ny
2n ≤ 3α− 1

2

∞∑
n=m

1

3n23nnαn
y2n ≤ 3α− 1

2

1

3m23mmαm
y2m.

Definition 3.5.11. For 0 < y ≤ ε < 1 define

B(y) :=
y

π
6

√
24− y2

and Bε,k := ε−k
B(ε)k

1−B(ε)
. (3.25)

Lemma 3.5.12. If 0 < y ≤ ε < 1, then

log
(

1 +
B(y)k

1−B(y)

)
≤ Bε,k

1− (Bε,kεk)2
yk, k ≥ 1.

Proof. First note that for 0 < y <
√

24 the function B(y) is increasing and also that
B(y)k

1−B(y)
≤ B(y)k

1−B(ε)
and B(y) < y

π
6

√
24−ε2 = ε−1yB(ε). Hence

B(y)k

1−B(ε)
<
ε−kykB(ε)k

1−B(ε)
= Bε,ky

k.
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Consequently,

log

(
1 +

B(y)k

1−B(y)

)
≤ log

(
1 +Bε,ky

k
)

= −
∞∑
n=1

(−1)n

n
Bn
ε,ky

kn

=−
∞∑
n=1

1

2n
B2n
ε,ky

2kn +
∞∑
n=0

1

2n+ 1
B2n+1
ε,k yk(2n+1)

≤
∞∑
n=0

1

2n+ 1
B2n+1
ε,k yk(2n+1) ≤

∞∑
n=0

B2n+1
ε,k yk(2n+1)

=
Bε,ky

k

1− (Bε,kyk)2
≤ Bε,k

1− (Bε,kεk)2
yk.

Lemma 3.5.13. If 0 < y ≤ ε < 1, then

log
(

1− B(y)k

1−B(y)

)
≥ − Bε,k

1−Bε,kεk
yk, k ≥ 1.

Proof.

log
(

1− B(y)k

1−B(y)

)
≥ log

(
1−Bε,ky

k) = −
∞∑
n=1

1

n
Bn
ε,ky

kn ≥ −
∞∑
n=1

Bn
ε,ky

kn

=− Bε,ky
k

1−Bε,kyk
≥ − Bε,k

1−Bε,kεk
yk.

Lemma 3.5.14. For all k ≥ 2 and 0 < ε ≤ 1√
7

we have

6k

5kπk
< Bε,k ≤

b0 · 6k

πk(
√

24− 1
7
)k
,

where b0 := 1
1− 6
√
7π

√
24− 1

7

and again Bε,k as in (3.25).

Proof. Define

s :=
√

24− ε2, ls :=

√
24− 1

7
, us := 4.9, lε := 0, and uε :=

1√
7
.
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For all k ≥ 2 and 0 < ε ≤ 1√
7
, we have

ls ≤ s < us and lε < ε ≤ uε.

The following conventions for the letters l and u will be useful: la denotes a lower
bound for the quantity a, and ua will denote an upper bound for the quantity a.
And again we use B(y) as defined in Definition 3.5.11.

Then

0 =
lε
π
6
us

< B(ε) =
ε
π
6
s
≤ uε

π
6
ls
.

Let us define lB := 0 and uB := uε
π
6
ls

. Then

lB < B(ε) ≤ uB ⇒ 1− uB ≤ 1−B(ε) < 1− lB = 1⇒ 1

1− lB
= 1 <

1

1−B(ε)
≤ 1

1− uB
,

and 1
(π
6
us)k

< 1
(π
6
s)k
≤ 1

(π
6
ls)k

. Hence

6k

5kπk
<

6k

(4.9)kπk
=

1

(1− lB)(π
6
us)k

< Bε,k ≤
1

(1− uB)(π
6
ls)k

=
1(

1−
1√
7

π
6

√
24− 1

7

)(
πk

6k

(√
24− 1

7

)k) =
b0

πk

6k

(√
24− 1

7

)k .

Definition 3.5.15. Define

β :=

√
24− 1

7

and for k ≥ 0,

Ck :=
6k

(πβ)k
.

Lemma 3.5.16. Let 0 < ε ≤ 1√
7

and Bε,k be as in (3.25). Then for k ≥ 2,

Bε,k

1− (Bε,kεk)2
≤ b1Bε,k and

Bε,k

1−Bε,kεk
≤ b2Bε,k,

with

b1 :=
1

1− 1
49
b2

0C4

, b2 :=
1

1− 1
7
b0C2

,

and b0 as in Lemma 3.5.14.

58



Proof. We obtain, using Lemma 3.5.14,

Bε,k

1−Bε,kεk
≤ Bε,k

1− 1
7
Bε,k

≤ Bε,k

1− 1
7
b0C2

= b2Bε,k,

and
Bε,k

1− (Bε,kεk)2
≤ Bε,k

1− 1
49
B2
ε,k

≤ Bε,k

1− 1
49
b2

0C4

= b1Bε,k.

Lemma 3.5.17. Let Ck be as in Definition 3.5.15, then

C2m <
1

3m23mαmm
, m ≥ 10, and C2m−1 <

69

25

1

23m3mαm(2m− 1)
, m ≥ 14.

Proof. We start with the first inequality:

C2m =
( 252

167π2

)m
<

(36 + π2)m

3m23mmπ2m
⇔
( 6048

6012 + 167π2

)m
m < 1.

To prove the inequality in the rewritten form, define ` := 6048
6012+167π2 and note that

` < 1. Moreover, for m ≥ 10,

m`m < 1⇔ logm+m log ` < 0.

Define f(m) := m log `+ logm. We have to show f(m) < 0 for all m ≥ 10. We first
show that f(m) is decreasing for m ≥ 10. This is equivalent to f ′(m) = log `+ 1

m
< 0

for m ≥ 10. This is equivalent to showing `e1/m < 1 for m ≥ 10. Now for m ≥ 10 we
have `e1/m ≤ `e1/10. By numerics, `e1/10 < 1 and f(10) < 0. Since f(m) is decreasing
and f(m) ≤ f(10) < 0 for m ≥ 10, the first inequality is proven. Now for the second
inequality, first note that

C2m−1 =
( 6

πβ

)2m−1

=
( 252

167π2

)m(π
6

√
167

7

)
.

Hence we have to show( 252

167π2

)m(π
6

√
167

7

)
<

69

25

1

23m3mαm(2m− 1)
,

59



which is equivalent to( 6048

6012 + 167π2

)m
(2m− 1) <

414

25π

√
7

167
⇔ (2m− 1)`m <

414

25π

√
7

167

⇔ m log `+ log(2m− 1)− log
( 414

25π

√
7

167

)
︸ ︷︷ ︸

=:g(m)

< 0.

Now anolgously to the proof of the first case one observes that g(m) is decreasing
for m ≥ 14 and that g(14) < 0, hence g(m) ≤ g(14) < 0.

3.6 An infinite family of inequalities for log p(n)

and its growth

After the preparations made in Section 3.5, in this section we prove our Main The-
orem, Theorem 3.6.6, which implies Theorem 3.1.1 as a corollary. Again we let

α =
π2

36 + π2
.

Definition 3.6.1. Let Bε,k be as in Definition 3.5.11 and µ1, µ2 as in Lemma 3.5.9
and ν := 3α−1

2
. Moreover, let 0 < ε ≤ 1√

7
. For m, k ≥ 1 we define

A1,k(2m) :=
Bε,k

1− (Bε,kεk)2
εk−2m + ν

1

3m23mmαm
,

A−1,k(2m) :=
Bε,k

1−Bε,kεk
εk−2m +

1

3m23m+1mαm
1

1− ε2

3·23α

+

µ1

23m3mαm(1 + 2m)

1

1− ε2

3α·23
,

A1,k(2m− 1) :=
Bε,k

1− (Bε,kεk)2
εk−2m+1 − µ2

23m−33m−1αm−1(2m− 1)
,

A−1,k(2m− 1) :=
Bε,k

1−Bε,kεk
εk−2m+1 +

1

3m23m+1mαm
1

1− ε2

3·23α

+

µ1

23m−33m−1αm−1(2m− 1)

1

1− ε2

3α·23
.
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Lemma 3.6.2. Let
∑∞

n=1 gny
n as in Definition 3.5.1 and Gi,k(y) as in Definition

3.5.2. Moreover let 0 < y ≤ ε ≤ 1√
7
. Then for k ≥ 2m ≥ 2, we have

2m−1∑
n=1

gny
n − A−1,k(2m)y2m ≤ G−1,k(y) and G1,k(y) ≤

2m−1∑
n=1

gny
n + A1,k(2m)y2m,

and for k ≥ 2m− 1 ≥ 1,

2m−2∑
n=1

gny
n − A−1,k(2m− 1)y2m−1 ≤ G−1,k(y)

and

G1,k(y) ≤
2m−2∑
n=1

gny
n + A1,k(2m− 1)y2m−1.

Proof. For k ≥ 2m ≥ 2, by using the Lemmas 3.5.9 to 3.5.12, we obtain

G1,k(y) ≤
2m−1∑
n=1

gny
n +

Bε,k

1− (Bε,kεk)2
yk + ν

1

3m23mmαm
y2m − µ2

23m3mαm(1 + 2m)
y2m+1

≤
2m−1∑
n=1

gny
n +

Bε,k

1− (Bε,kεk)2
εk−2my2m + ν

1

3m23mmαm
y2m

=
2m−1∑
n=1

gny
n + A1,k(2m)y2m.

By using the Lemmas 3.5.9 to 3.5.10 together with Lemma 3.5.13 we obtain

G−1,k(y) ≥
2m−1∑
n=1

gny
n − Bε,k

1−Bε,kεk
yk − 1

3m23m+1mαm
1

1− ε2

3·23α

y2m

− µ1

23m3mαm(1 + 2m)

1

1− ε2

3α·23
y2m+1

≥
2m−1∑
n=1

gny
n − Bε,k

1−Bε,kεk
εk−2my2m − 1

3m23m+1mαm
1

1− ε2

3·23α

y2m

− µ1

23m3mαm(1 + 2m)

1

1− ε2

3α·23
y2m

=
2m−1∑
n=1

gny
n − A−1,k(2m)y2m.
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The statement for A−1,k(2m− 1) is proven analogously.

Lemma 3.6.3. We have for m ≥ 10 that

A1,k(2m) <
1

3m23mmαm
, A−1,k(2m) <

2

3m23mmαm

and for m ≥ 14

A1,k(2m− 1) <
2

3m23m(2m− 1)αm
, A−1,k(2m− 1) <

7

3m23m(2m− 1)αm
.

Proof. For m ≥ 10 we have,

A1,k(2m) =
Bε,k

1− (Bε,kεk)2
εk−2m + ν

1

3m23mαmm
(by Definition 3.6.1)

< b1Bε,kε
k−2m + ν

1

3m23mαmm
(by Lemma 3.5.16)

< b1b0
6k

(πβ)k
εk−2m + ν

1

3m23mαmm
(by Lemma 3.5.14)

= b0b1Ckε
k−2m + ν

1

3m23mαmm
(using Definition 3.5.15)

≤ b0b1C2m + ν
1

3m23mαmm
(because f(k) := Ckε

k−2m is decreasing for all k ≥ 2m)

< b0b1
1

3m23mαmm
+ ν

1

3m23mαmm
(by Lemma 3.5.17)

=
(
b0b1 + ν

) 1

3m23mαmm

<
1

3m23mαmm
(by evaluating b0b1 + ν numerically).

Similarly,

A−1,k(2m)

=
Bε,k

1−Bε,kεk
εk−2m +

1

3m23m+1αmm

1

1− ε2

24α

+

µ1

23m3mαm(2m+ 1)

1

1− ε2

24α

(by Definition 3.6.1)

< b2Bε,kε
k−2m +

1

2

1

3m23mαmm

1

1− ε2

24α

+
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µ1

23m3mαm(2m+ 1)

1

1− ε2

24α

(by Lemma 3.5.16)

< b2b0
6k

(πβ)k
εk−2m +

1

2

1

3m23mαmm

1

1− ε2

24α

+

µ1

23m3mαm(2m+ 1)

1

1− ε2

24α

(by Lemma 3.5.14)

≤ b0b2 · C2m +
1

2

1

3m23mαmm

1

1− 1
168α

+
µ1

23m3mαm(2m+ 1)

1

1− 1
168α

< b0b2
1

3m23mαmm
+

1

2

1

3m23mαmm

1

1− 1
168α

+

1

2

µ1

23m3mαmm

1

1− 1
168α

(by Lemma 3.5.17)

=
(
b0b2 +

1

2

1

1− 1
168α

(1 + µ1)
) 1

3m23mαmm

<
2

3m23mαmm
(by evaluating b0b2 +

1

2

1

1− 1
168α

(1 + µ1) numerically).

The statements for A1,k(2m− 1) and A−1,k(2m− 1) are proven analogously.

Definition 3.6.4. For n, U ≥ 1 we define

Pn(U) := − log 4
√

3− log n+ π

√
2n

3
+

U∑
u=1

gu(1/
√
n)u.

Lemma 3.6.5. Let g(k) be as in Definition 3.4.3 and Pn(U) as in Definition 3.6.4.
If m ≥ 1, k ≥ 2m and

n >

{
6 if m = 1,

g(k), if m ≥ 2,

then

− A−1,k(2m)
1

nm
< log p(n)− Pn(2m− 1) < A1,k(2m)

1

nm
. (3.26)

If m ≥ 2, k ≥ 2m− 1, and n > g(k), then

− A−1,k(2m− 1)
1

nm−
1
2

< log p(n)− Pn(2m− 2) < A1,k(2m− 1)
1

nm−
1
2

. (3.27)
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Proof. We start with the inequality from Lemma 3.5.3. Next we use Lemma 3.6.2
to bound G1,k(y). Finally we set y = 1√

n
and obtain the desired result.

Theorem 3.6.6. Let G(y) =
∑∞

n=1 gny
n be as in Definition 3.5.1. Let g(k) be as in

Definition 3.4.3 and Pn(U) as in Definition 3.6.4. If m ≥ 1 and n > g(2m), then

Pn(2m− 1)− 2

3m23mαmmnm
< log p(n) < Pn(2m− 1) +

1

3m23mαmmnm
; (3.28)

if m ≥ 2 and n > g(2m− 1), then

Pn(2m− 2)− 7

3m23mαm(2m− 1)nm−1/2
< log p(n) <

Pn(2m− 2) +
2

3m23mαm(2m− 1)nm−1/2
.

(3.29)

Proof. We start by setting k = 2m in (3.26) of Lemma 3.6.5, and k = 2m − 1 in
(3.27). In this inequality we bound A1,k(m) resp A−1,k(m) by using Lemma 3.6.3.
This gives (3.29) for all m ≥ 14 and n > g(2m − 1), and (3.28) for m ≥ 10 and
n > g(2m).

In order to prove (3.28) and (3.29) for the remaining values of m, firstly we will
prove that

if (3.28) holds for m ≥ 2 and all n ≥ y ≥ 1, then (3.28) holds for m− 1 and all n ≥ y.
(3.30)

In particular, if we subtract from the lower bound on log p(n) with parameter m in
(3.28) the lower bound on log p(n) with parameter m − 1, we obtain f(2m,−4) −
g(2m− 2,−4), where

f(w, x) :=
w−1∑

u=w−2

gu

( 1√
n

)u
+

x

(24α)d
w
2
ew

( 1√
n

)w
and

g(w, x) :=
x

(24α)d
w
2
ew

( 1√
n

)w
.

Similarly, if we subtract from the upper bound for m → m − 1 in (3.28) the upper
bound for m, we obtain g(2m − 2, 2) − f(2m, 2). Hence in order to prove (3.30), it
suffices to prove

f(2m,−4) > g(2m− 2,−4) and f(2m, 2) < g(2m− 2, 2). (3.31)
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Analogously, in order to prove that if (3.29) holds for all m ≥ 3 and all n ≥ y ≥ 1,
then (3.29) holds for m− 1 and all n ≥ y, it suffices to prove

f(2m− 1,−7) > g(2m− 3,−7) and f(2m− 1, 2) < g(2m− 3, 2). (3.32)

For proving (3.31) and (3.32), we shall prove

f(w, x0(w)) > g(w − 2, x0(w)) with x0(w) :=
{ −4, if w is even
−7, if w is odd

(3.33)

and
f(w, y0) < g(w − 2, y0) with y0 > 0. (3.34)

From Lemma 3.5.7 and Lemma 3.5.8 we have

`w

(24α)b
w
2
cw
≤ gw ≤

uw

(24α)b
w
2
cw

with

`w :=

{
−µ1, if w is odd
−1, if w is even

and uw :=

{
−µ2, if w is odd
2ν, if w is even

,

where µ1 and µ2 are as in Lemma 3.5.9 and ν as in Definition 3.6.1. Consequently,

f(w, x0) =
w−1∑

u=w−2

gu

( 1√
n

)u
+

x0

(24α)d
w
2
ew

( 1√
n

)w
≥ `w−2

(24α)b
w−2
2
c(w − 2)

( 1√
n

)w−2

+
`w−1

(24α)b
w−1
2
c(w − 1)

( 1√
n

)w−1

+
x0

(24α)d
w
2
ew

( 1√
n

)w
.

In order to prove (3.33), it is enough to prove

`w−2

w − 2
+

`w−1

(24α)αw(w − 1)

1√
n

+
x0

(24α)βww

1

n
>

x0

(24α)δw(w − 2)
, (3.35)

where

αw =
⌊w − 1

2

⌋
−
⌊w − 2

2

⌋
=
{ 0, if w is even

1, if w is odd
,

βw =
⌈w

2

⌉
−
⌊w − 2

2

⌋
=
{ 1, if w is even

2, if w is odd
,
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and

δw =
⌈w − 2

2

⌉
−
⌊w − 2

2

⌋
=
{ 0, if w is even

1, if w is odd
.

Inequality (3.35) is equivalent to(
`w−2 −

x0

(24α)αw

) 1

w − 2
> − `w−1

(24α)δw(w − 1)

1√
n

+
x0

(24α)βww

1

n
,

which is implied by(
`w−2 −

x0

(24α)αw

) 1

w − 2
> −

( `w−1

(24α)αw(w − 1)
+

x0

(24α)βww

) 1√
n

(3.36)

since δw = αw, x0 < 0 and 1√
n
≥ 1

n
for all n ≥ 1. Inequality (3.36) is equivalent to

n ≥

⌈
(w − 2)2

(
`w−1

(24α)αw (w−1)
+ x0

(24α)βww

)2

(
`w−2 − x0

(24α)αw

)2

⌉
=: N1(w, x0).

We checked with Mathematica that N1(w, x0(w)) ≤ 1; see the Appendix, Section
3.8.3.
Similarly to above, for y0 > 0 one has,

f(w, y0) =
w−1∑

u=w−2

gu

( 1√
n

)u
+

y0

(24α)d
w
2
ew

( 1√
n

)w
≤ uw−2

(24α)d
w−2
2
e(w − 2)

( 1√
n

)w−2

+
uw−1

(24α)d
w−1
2
e(w − 1)

( 1√
n

)w−1

+
y0

(24α)d
w
2
ew

( 1√
n

)w
.

In order to prove (3.34), it is enough to show

uw−2

(24α)d
w−2
2
e(w − 2)

( 1√
n

)w−2

+
uw−1

(24α)d
w−1
2
e(w − 1)

( 1√
n

)w−1

+
y0

(24α)d
w
2
ew

( 1√
n

)w
<

y0

(24α)d
w−2
2
e(w − 2)

( 1√
n

)w−2

.

This last inequality can be rewritten as the following equivalent inequality,

uw−2

w − 2
+

uw−1

(24α)αw(w − 1)

1√
n

+
y0

(24α)βww

1

n
<

y0

(24α)αw(w − 2)
,
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which is implied by( y0

(24α)αw
− uw−2

) 1

w − 2
>
( uw−1

(24α)αw(w − 1)
+

y0

(24α)βww

) 1√
n

(3.37)

since y0 > 0 and 1√
n
≥ 1

n
. Inequality (3.37) is equivalent to

n ≥

⌈
(w − 2)2

(
uw−1

(24α)αw (w−1)
+ y0

(24α)βww

)2

(
y0

(24α)αw
− uw−2

)2

⌉
=: N2(w, y0).

We checked using Mathematica that N2(w, y0) ≤ 1 for all y0 ≥ 1; see the Appendix,
Section 3.8.3.

We have checked with Mathematica that (3.28) holds for m ∈ {2, . . . , 10} and
n ∈ N such that

g(2m− 2) < n ≤ g(2m). (3.38)

Now (3.28) is true for m = 10 and n > g(2m). Next, assume that (3.28) is true
for m = N with 2 ≤ N ≤ 10 and n > g(2N). Then, as shown above, (3.28) is
true for m = N − 1 if n > g(2N). By (3.38), (3.28) is true for m = N − 1 if
g(2N − 2) < n ≤ g(2N). This implies that (3.28) is true for m = N − 1 and
n > g(2N − 2). Hence the result follows inductively. The proof of (3.29) is done
analogously.

Finally, we are put into the position to prove Theorem 3.1.1.
Proof of Theorem 3.1.1: We apply (3.28) in Theorem 3.6.6, with m = 1. Then

for n ≥ 1, we have

− log 4
√

3− log n+ π

√
2n

3
−
√

6
( π

144
+

1

2π

) 1√
n
− 2

24α

1

n

< log p(n) < − log 4
√

3− log n+ π

√
2n

3
−
√

6
( π

144
+

1

2π

) 1√
n

+
1

24α

1

n
.

Noting that
√

6
(

π
144

+ 1
2π

)
= 0.44 . . . finishes the proof.
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3.7 An application to Chen-DeSalvo-Pak log-concavity

result

In 2010 at FPSAC [35], William Chen conjectured that {p(n)}n≥26 is log-concave
and that for n ≥ 1,

p(n)2 <
(

1 +
1

n

)
p(n− 1)p(n+ 1). (3.39)

DeSalvo and Pak [53] proved these two conjectures. Moreover, they refined (3.39)
by proposing the following conjecture

p(n)2 <
(

1 +
π√

24n3/2

)
p(n− 1)p(n+ 1), n ≥ 45. (3.40)

Chen, Wang and Xie [39] gave an affirmative answer to (3.40). In this section, using
Theorem 3.6.6, we continue this research by obtaining the following inequality,(

1 +
π√

24n3/2
− 1

n2

)
p(n− 1)p(n+ 1) < p(n)2 <

(
1 +

π√
24n3/2

)
p(n− 1)p(n+ 1);

for a more precise statement see Theorem 3.7.6. Note that the right inequality is
just (3.40), but we give here our proof in order to show that, alternatively, one can
obtain this from Theorem 3.6.6. In order to achieve our goal we also need to prove
the Lemmas 3.7.3 to 3.7.5 in this section. These lemmas deal with estimating the
tail of an infinite series involving standard binomial coefficients.

Proposition 3.7.1. For s ≥ 1 and k ≥ 0 we have(
−2s−1

2

k

)
=

(−1)k

4k

(
2s+2k−2
s+k−1

)(
s+k−1
s−1

)(
2s−2
s−1

)
and (

−s
k

)
= (−1)k

(
s+ k − 1

s− 1

)
.

Proof. By simplifying quotients formed by taking each expression in k + 1 divided
by the original expression in k.

Lemma 3.7.2. For k,m ≥ 0 and s ≥ 1,(
s− 1 +m+ k

s− 1

)
≤
(
s− 1 +m

s− 1

)
sk. (3.41)
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Proof. From(
s− 1 +m+ k

s− 1

)
=

(s− 1 +m+ k)!

(s− 1)!(m+ k)!
=

(
s− 1 +m

s− 1

)
(s+m) · · · (s+m+ k − 1)

(m+ 1) · · · (m+ k)

we have s+m+j
m+j+1

≤ s for each 0 ≤ j ≤ k − 1; this is because

s+m+ j ≤ s(m+ j + 1)⇔ m(s− 1) + j(s− 1) ≥ 0.

This proves (3.41).

Lemma 3.7.3. For n, s ≥ 1, m ≥ 0, and n > 2s let

bm,n(s) :=
4
√
s√

s+m− 1

(
s+m− 1

s− 1

)
1

nm
,

then

− bm,n(s) <
∞∑
k=m

(
−2s−1

2

k

)
1

nk
< bm,n(s) (3.42)

and

0 <
∞∑
k=m

(
−2s−1

2

k

)
(−1)k

nk
< bm,n(s). (3.43)

Proof. For s ≥ 1:∣∣∣∣∣
∞∑
k=m

(
−2s−1

2

k

)
1

nk

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=m

(−1)k

4k

(
2s+2k−2
s+k−1

)(
s+k−1
s−1

)(
2s−2
s−1

) 1

nk

∣∣∣∣∣ (by Proposition 3.7.1)

≤
∞∑
k=m

1

4k

(
2s+2k−2
s+k−1

)(
s+k−1
s−1

)(
2s−2
s−1

) 1

nk

≤
∞∑
k=m

2
√
s− 1√

π(s+ k − 1)

(
s+ k − 1

s− 1

)
1

nk
(using

4n

2
√
n
≤
(

2n

n

)
≤ 4n√

πn
)

<
2
√
s− 1√

s+m− 1

∞∑
k=m

(
s− 1 + k

s− 1

)
1

nk(
using

1√
π
< 1 and

1√
s+ k − 1

≤ 1√
s+m− 1

for all k ≥ m

)

=
2
√
s− 1√

s+m− 1

∞∑
k=0

(
s− 1 +m+ k

s− 1

)
1

nm+k

=
2
√
s− 1√

s+m− 1

1

nm

∞∑
k=0

(
s− 1 +m+ k

s− 1

)
1

nk
.
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Now we apply Lemma 3.7.2 to obtain,∣∣∣ ∞∑
k=m

(
−2s−1

2

k

)
1

nk

∣∣∣ ≤ 2
√
s− 1√

s− 1 +m

1

nm

(
s− 1 +m

s− 1

) ∞∑
k=0

sk

nk

=
2
√
s− 1√

s+m− 1

(
s− 1 +m

s− 1

)
1

nm
n

n− s
< bm,n(s),

where the latter inequality is by n > 2s. This proves (3.42). Moreover, the bound
we obtained also works for

∞∑
k=m

1

4k

(
2s+2k−2
s+k−1

)(
s+k−1
s−1

)(
2s−2
s−1

) 1

nk
,

because this term showed up along the way in the proof of the previous case. Hence
applying Proposition 3.7.1 implies (3.43).

Lemma 3.7.4. For n, s ≥ 1, m ≥ 0, and n > 2s let

βm,n(s) :=
2

nm

(
s+m− 1

s− 1

)
,

then

− βm,n(s) <
∞∑
k=m

(
−s
k

)
1

nk
< βm,n(s) (3.44)

and

0 <
∞∑
k=m

(
−s
k

)
(−1)k

nk
< βm,n(s). (3.45)

Proof. ∣∣∣ ∞∑
k=m

(
−s
k

)
1

nk

∣∣∣ =
∣∣∣ ∞∑
k=m

(−1)k
(
s+ k − 1

s− 1

)
1

nk

∣∣∣ (by Proposition 3.7.1)

≤
∞∑
k=m

(
s+ k − 1

s− 1

)
1

nk

=
1

nm

∞∑
k=0

(
s+ k − 1 +m

s− 1

)
1

nk

<
1

nm

(
s− 1 +m

s− 1

) ∞∑
k=0

sk

nk
(by Lemma 3.7.2),

and geometric series summation implies (3.44). The proof of (3.45) is analogous.
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Finally, we need another similar lemma which is easy to prove.

Lemma 3.7.5. For m,n, s ≥ 1 and n > 2s let

cm,n(s) :=
2

m

sm

nm
.

Then

−cm,n(s) <
∞∑
k=m

(−1)k+1

k

sk

nk
< cm,n(s) and − cm,n(s) < −

∞∑
k=m

1

k

sk

nk
< 0

and

− cm,n(s)√
m

<
∞∑
k=m

(
1/2

k

)
sk

nk
<
cm,n(s)√

m
and − cm,n(s)√

m
<

∞∑
k=m

(
1/2

k

)
(−1)ksk

nk
< 0.

(3.46)

The following theorem was announced in the abstract; its proof is the goal of this
section. To arrive at the intermediate inequality (3.51), we need our main result,
Theorem 3.6.6. For the remainder of the proof, one spends some time on simplifying
(3.51) in order to arrive at the desired form. In order to do, one needs the Lemmas
3.7.3 to 3.7.5 which we have proven above in this section.

Theorem 3.7.6. For n ≥ 45,

p(n)2 <
(

1 +
π√

24n3/2

)
p(n− 1)p(n+ 1),

and for n ≥ 120

p(n)2 >
(

1 +
π√

24n3/2
− 1

n2

)
p(n− 1)p(n+ 1).

Proof. We set m = 3 in the first equation of Theorem 3.6.6, which gives for all

n ≥
⌈
g(6)

⌉
that

Pn(5)− 2

3(24α)3

1

n3︸ ︷︷ ︸
=:l(n)

< log p(n) < Pn(5) +
1

3(24α)3

1

n3︸ ︷︷ ︸
=:u(n)

,

using the notation from Definition 3.6.4. This inequality has the form

l(n) < log p(n) < u(n). (3.47)
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By substituting n by n+ 1 and multiplying by −1 into (3.47) we obtain

− u(n+ 1) < − log p(n+ 1) < −l(n+ 1), (3.48)

and by substituting n by n− 1 and multiplying by −1 again into (3.47) gives

− u(n− 1) < − log p(n− 1) < −l(n− 1). (3.49)

Multiplying (3.47) by 2, and by adding (3.48) and (3.49), results in

2l(n)− u(n− 1)− u(n+ 1) < 2 log p(n)− log p(n− 1)− log p(n+ 1) <

2u(n)− l(n− 1)− l(n+ 1).
(3.50)

We define

A1(n) := log

(
1 +

1

n

)
+ log

(
1− 1

n

)
,

A2(n) := −π
√

2n

3

(
∞∑
k=1

(
1/2

k

)
(−1)k

nk
+
∞∑
k=1

(
1/2

k

)
1

nk

)
,

and for t ≥ 3

At(n) := − gt−2

(
√
n)t−2

(
∞∑
k=1

(
− t−2

2

k

)
(−1)k

nk
+
∞∑
k=1

(
− t−2

2

k

)
1

nk

)
,

where gn is as in Definition 3.5.1. Then from (3.50), by substituting l(n) and u(n)
according to their definitions, we obtain

− 7

(24α)3 · 3
1

n3
+

7∑
t=1

At(n) < 2 log p(n)− log p(n− 1)− log p(n+ 1)

<
7∑
t=1

At(n) +
8

(24α)3

1

n3
,

which implies

− 3

(24α)3

1

n3
+

7∑
t=1

At(n) < 2 log p(n)− log p(n− 1)− log p(n+ 1)

<
7∑
t=1

At(n) +
3

(24α)3

1

n3
.

(3.51)
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Finally, we establish bounds for the At(n). For t = 1,

A1(n) = log(1 +
1

n
) + log(1− 1

n
) = − 1

n2
− 1

2n4
+
∞∑
k=5

(−1)k+1

knk
−
∞∑
k=5

1

knk
.

Taking s = 1 and m = 5 in Lemma 3.7.5 we have

− 1

n2
− 1

2n4
− 4

5n5
< A1(n) < − 1

n2
− 1

2n4
+

2

5n5

which implies

− 1

n2
− 2

n3
< A1(n) < − 1

n2
. (3.52)

For t = 2, note that

A2(n) =− π
√

2n

3

(
− 5

64n4
− 1

4n3
+
∞∑
k=5

(
1/2

k

)
(−1)k

nk
+
∞∑
k=5

(
1/2

k

)
1

nk

)
.

Applying Lemma 3.7.5, (3.46), with s = 1 and m = 5 gives

−π
√

2n

3

(
− 1

4n2
− 5

64n4
− 4

5
√

5

1

n5

)
< A2(n) < −π

√
2n

3

(
− 1

4n2
− 5

64n4
+

2

5
√

5

1

n5

)
,

which implies,
π√

24n3/2
< A2(n) <

π√
24n3/2

+
2

n5/2
. (3.53)

Next we consider odd indices; i.e., for 1 ≤ t ≤ 3,

A2t+1(n) =− g2t−1

(
√
n)2t−1

((2t−1
2

)
2

n2
+

(
2t−1

2

)
4

12n4
+
∞∑
k=5

(
−2t−1

2

k

)
(−1)k

nk
+
∞∑
k=5

(
−2t−1

2

k

)
1

nk

)
,

where (a)k := a(a− 1) . . . (a− k + 1). Applying Lemma 3.7.3 with s = t and m = 5
gives

− g2t−1

(
√
n)2t−1

((2t−1
2

)
2

n2
+

(
2t−1

2

)
4

12n4
− 4

√
t√

t+ 4

(
t+ 4

t− 1

)
1

n5

)
< A2t+1(n)

< − g2t−1

(
√
n)2t−1

((2t−1
2

)
2

n2
+

(
2t−1

2

)
4

12n4
+

8
√
t√

t+ 4

(
t+ 4

t− 1

)
1

n5

)
,
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which implies

− 3g1

4n5/2
+

4g1√
5

1

n3
< A3(n) < − 5g1

n5/2
, (3.54)

4
√

6g3

n3
< A5(n) < −29g3

n5/2
, (3.55)

4
√

2√
7

(
7

2

)
g5

n3
< A7(n) < −117g5

n5/2
. (3.56)

Finally, we consider even indices; i.e., for 1 ≤ t ≤ 2,

A2t+2(n) =− g2t

(
√
n)2t

((−2t
2

)
2

n2
+

(
−2t

2

)
4

12n4
+
∞∑
k=5

(
−2t

2

k

)
(−1)k

nk
+
∞∑
k=5

(
−2t

2

k

)
1

nk

)
.

Applying Lemma 3.7.4 with s = t and m = 5, we obtain

−
((−t)2

n2
+

(−t)4

12n4
− 2

n5

(
t+ 4

t− 1

)) g2t

(
√
n)2t

< A2t+2(n)

< −
((−t)2

n2
+

(−t)4

12n4
+

4

n5

(
t+ 4

t− 1

)) g2t

(
√
n)2t

.

From this,
2g2

n3
< A4(n) < − 8g2

n5/2
, (3.57)

12g4

n3
< A6(n) < −40g4

n5/2
. (3.58)

Now, substituting (3.52) to (3.58) into (3.51) gives,

L(n) < 2 log p(n)− log p(n− 1)− log p(n+ 1) < U(n),

where

L(n) :=
π√
24

1

n3/2
− 1

n2
− 3g1

4

1

n5/2
+(

−2 +
4g1√

5
+ 2g2 + 4

√
6g3 + 12g4 +

4
√

2√
7

(
7

2

)
g5 −

3

(24α)3

)
1

n3

and

U(n) :=
π√
24

1

n3/2
− 1

n2
+

(
2− 5g1 − 8g2 − 29g3 − 40g4 − 117g5 +

3

(24α)3

)
1

n5/2
.
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By using numerical estimations of the coefficient of 1/n5/2 and of the coefficient of
1/n3 in the lower bound, and of the coefficient of 1/n5/2 in the upper bound above,
we are led to

L1(n) < 2 log p(n)− log p(n− 1)− log p(n+ 1) < U1(n),

with

L1(n) :=
π√
24

1

n3/2
− 1

n2
+

1

4

1

n5/2
− 4

n3
and U1(n) :=

π√
24

1

n3/2
− 1

n2
+

7

n5/2
.

Next we observe that

− 1

n2
+

7

n5/2
< − π2

48n3
for all n ≥ 50

and

− 1

n2
+

π√
24

1

n3/2
+

1

4

1

n5/2
− 4

n3
> − 1

n2
+

π√
24

1

n3/2
for all n ≥ 257.

Therefore, for n ≥ 257,

π√
24n3/2

− 1

n2
< 2 log p(n)− log p(n− 1)− log p(n+ 1) <

π√
24n3/2

− π2

48n3
. (3.59)

Because of log(1 + x) < x for x > 0, we have

log
(

1 +
π√

24n3/2
− 1

n2

)
<

π√
24n3/2

− 1

n2
, (3.60)

and because of x− x2

2
< log(1 + x) for all x > 0, we have

π√
24n3/2

− π2

48n3
< log

(
1 +

π√
24n3/2

)
. (3.61)

Applying (3.60) and (3.61) to (3.59) gives

log
(

1+
π√

24n3/2
− 1

n2

)
< 2 log p(n)− log p(n−1)− log p(n+1) < log

(
1+

π√
24n3/2

)
,

which after exponentiation gives the desired result for n ≥ 257. To extend the proofs
of the statements for n ≥ 45, resp. n ≥ 120, is done by straight forward numerics.
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3.8 Appendix

3.8.1 Methods to discover the results

We will describe very briefly the mathematical experiments used in this research.
We want to point out that without these experiments, the theoretical results of this
chapter would never have been found. For this reason we feel that it is important
to give at least a brief sketch of what led us to the final formulas and how we were
led to conjecture special cases of related asymptotics. The final asymptotic formulas
can easily be derived from our main result, Theorem 3.6.6 presented in Section 3.6.

In Section 3.3 we proved the inequality

eπ
√

2n
3

4
√

3n

(
1− 1

2
√
n

)
< p(n) <

eπ
√

2n
3

4
√

3n

(
1− 1

3
√
n

)
, (3.62)

which was found by mathematical experiments. Our proof uses methods similar to
those used in [53] and [37]. In our attempt to prove the following formula for the
asymptotics of log p(n),

log p(n) ∼ π

√
2n

3
− log n− log(4

√
3)− 0.44 . . .√

n
, (3.63)

we first tried to prove the log-version of (3.62). However, we soon realised that this
inequality is not sharp enough in order to prove (3.63). We noted that the inequality
for p(n) in [37, Lemma 2.2] can be used instead. This formula says that for n ≥ 1206,

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)10

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)10

)
, (3.64)

where µ(n) := π
6

√
24n− 1. We observed that after taking the log of both sides, with

some extra work, (3.63) can be proven. When we saw the asymptotics (3.3), discov-
ered by Schoenfield and Kotesovec, we naturally wondered whether these asymptotics
can also be proven by taking the log of an appropriate inequality. We observed that
(3.64) is enough also to prove these asymptotics, and we observed that (3.64) can be
used to prove an even more refined asymptotic formula that takes the form

log p(n) ∼ π

√
2n

3
− log n− log 4

√
3 + b1

( 1√
n

)
+ b2

( 1√
n

)2

+ · · ·+ b9

( 1√
n

)9

,
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where

b1 = −π
√

6

2432
−
√

6

2π
≈ −0.44328...,

b2 =
1

3 · 23
− 3

22π2
≈ −0.034324...,

b3 = −π
√

6

2933
−
√

6

253π
−
√

6

22π3
≈ −0.028428...,

b4 =
1

2732
− 1

25π2
− 9

24π4
≈ −0.0080728...,

b5 = − π
√

6

21334
−
√

6

2103π
−
√

6

26π3
− 9

√
6

5 · 8π5
≈ −0.0033007...,

b6 =
1

2934
− 1

283π2
− 3

26π4
− 9

24π6
≈ −0.001174124716...,

b7 = −5π
√

6

21935
− 5

√
6

21433π
− 5

√
6

2113π3
− 3
√

6

27π5
− 33

√
6

247π7
≈ −0.00045651...,

b8 =
1

21434
− 1

21132π2
− 3

210π4
− 322

27π6
− 34

27π8
≈ −0.00017464...,

b9 = −7π
√

6

22336
− 35

√
6

22034π
− 35

√
6

21533π3
− 7
√

6

212π5
− 9
√

6

28π7
− 9
√

6

25π9
≈ −0.000068757...,

...

Of course we wondered whether one can get an even better formula. The only
obstacle that seemed to limit us was the 10 in the formula (3.64) above. This led
us to look into the details of the proof of (3.64), and we observed that the 10 can
be replaced by a k. This then led us to the discovery of the complete asymptotics.
That is, we also got b10, b11, . . . , etc. At this point we still were not fully satisfied.
Even though we observed that the formula (3.64) could be generalised, it was not a
proper generalization because we could not say explicitly for which precise range of
n the generalized inequality (3.18) for p(n) holds. We only could say that there is
some sufficiently big constant C(k) such that (3.18) for all n > C(k).

We felt that this is not a proper generalization because (3.64) gives C(10) ex-
plicitly, namely C(10) = 1206. After some work, we realized that we can obtain an
explicit expression for C(k), which is very close to the optimal value, according to
mathematical experiments. This C(k) is our g(k) of Section 3.4 where we gave a
generalization of (3.64).

Because (3.64) could be generalized, we suspected that also (3.62) could be gen-
eralized. The difference between the two inequalities is that (3.62) is in terms of
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with(combinat);

rt := proc (n) local rtn, k;

rtn := combinat:-numbpart(n);

for k to (1/2)*n do

rtn := rtn+combinat:-numbpart(k)*combinat:-numbpart(n-2*k)

end do;

rtn

end proc

Figure 3.3: Procedure for computing the number of cubic partitions of n.

√
n, while (3.64) is in terms of µ(n). We again took the log of both sides of the

generalized version of (3.64) and aimed not only at getting a refined asymptotic but
rather a new type of inequality. This was achieved in Section 3.6. However, even
after we found a preliminary version of Theorem 3.6.6, still something was missing.
We wondered whether we can guarantee that this inequality is optimal in some sense,
and not overestimated. After various experiments, we got control in the form (3.28)
and (3.29), where the error term in the inequality cannot be improved to a smaller
integer in the numerator—the same time keeping the statement unaltered. This is
the point where we stopped.

3.8.2 Discovery of Kotesovec’s formula (3.5) by regression
analysis

We used the procedure shown in Figure 3.3 to compute the sequence a(n) defined in
(3.4). This procedure works fine for computing a(n) in the range 1 ≤ n ≤ 215. The
computation took 24 hours on a notebook computer with Intel Core i7 CPU.

To find the approximate relation between log a(n),
√
n and log(n), substitute the

values n = 2k, 2k+1, 2k+2 into the target expression,

log a(n) ∼ α ·
√
n− β · log(n)− log(γ),

to obtain a system with three equations:
log2 a(2k) = ak log2(e) ·

√
2k − bk · k − ck + εk,

log2 a(2k+1) = ak log2(e) ·
√

2k+1 − bk · (k + 1)− ck + εk+1,

log2 a(2k+2) = ak log2(e) ·
√

2k+2 − bk · (k + 2)− ck + εk+2,
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and solve it successively for k from 1 to 13. Let (ak, bk, ck) be the solution of the above
equation system under the assumption εk = εk+1 = εk+2 = 0 for all k ∈ {1, . . . , 13}.
The numerical values of the (ak, bk, ck) are presented in Figure 3.4. In the limit
k →∞,

ak = log2 a(2k)+log2 a(2k+2)−2 log2 a(2k+1)

(3−2
√

2)
√

2k log2(e)
→ α,

bk = log2 a(2k)+log2 a(2k+2)−2 log2 a(2k+1)√
2−1

− {log2 a(2k+1)− log2 a(2k)} → β,

ck = 2ak log2(e)
√

2k−k bk
a(2k)

→ log2(γ).

Figure 3.4: Numerical values of the (ak, bk, ck).

The numerical values in Figure 3.4 clearly support the precise values

α = π, β =
5

4
, γ = 23 = 8.

Note that we have used a sub-sequence a(2k), k = 1, 2, . . . , 15. The regression anal-
ysis to obtain the numerical data for Fig. 3.1 and Fig. 3.2 are rather routine, so we
will not list any further details here.
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3.8.3 Mathematica computations

We present Mathematica computations needed in the proof of Theorem 3.6.6. Note
that in order to complete the proof of Theorem 3.6.6 we needed to bound four terms
by 1; however, in each inequality proven with Mathematica as shown below, we
checked that each inequality holds in fact for bounds smaller than 1, namely 1

5
,

1
3
, 1

26
and 1

26
. The Mathematica computations are based on Cylindrical Algebraic

Decomposition [44].

In[1]:= a :=
π2

36 + π2

In[2]:= (mu1,mu2,nu) :=
(√6

2π

(π2

72
+ 1 +

a

2(1− a)

)
,

√
6

2π

(
1 +

a

2

)
, 3

a

2
−

1

2

)

In[3]:= CylindricalDecomposition[{(2w − 2)2

(
−µ1
2w−1

+ −x
(24a)2w

)2
(−1 + x)2

<
1

5
,w ≥ 1, x ≥ 4}, {w, x}]

Out[3]= w ≥ 1 && x ≥ 4

In[4]:= CylindricalDecomposition[{
(( 2w − 3

x− 24 a mu1

)( 1

2w − 2
+

x

24a(2w − 1)

))2
<

1

3
,w ≥ 2, x ≥ 7}, {w, x}]

Out[4]= w ≥ 2 && x ≥ 7

In[5]:= CylindricalDecomposition[{
(
(2w − 2)

(
−mu2
2 w−1

+ y
24a(2w)

)
y − 2nu

)2
<

1

26
,w ≥ 1, y ≥ 1}, {w, y}]

Out[5]= w ≥ 1 && y ≥ 1

In[6]:= CylindricalDecomposition[{
(( 2w − 3

y + 24 a mu2

)( 2 nu

2w − 2
+

y

24a(2w − 1)

))2
<

1

26
,w ≥ 2, y ≥

1}, {w, y}]

Out[6]= w ≥ 2 && y ≥ 1
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Chapter 4

A unified framework to prove
multiplicative inequalities for the
partition function

In this chapter, we consider a certain class of inequalities for the partition function
of the following form:

T∏
i=1

p(n+ si) ≥
T∏
i=1

p(n+ ri),

which we call multiplicative inequalities. Given a multiplicative inequality with the
condition that

∑T
i=1 s

m
i 6=

∑T
i=1 r

m
i for at least one m ≥ 1, we shall construct an

unified framework so as to decide whether such a inequality holds or not. As a
consequence, we will see that study of such inequalities has manifold applications. For
example, one can retrieve the log-concavity property, strong log-concavity, and the
inequalities for p(n) considered by Bessenrodt and Ono, to name a few. Furthermore,
we obtain the full asymptotic expansion for the finite difference of the logarithm of
p(n), denoted by (−1)r−1∆r log p(n), which extends a result by Chen, Wang, and
Xie.

4.1 Multiplicative inequalities for p(n)

A partition of a positive integer n is a weakly decreasing sequence (λ1, λ2, . . . , λr) of
positive integers such that λ1 + λ2 + · · · + λr = n. Let p(n) denote the number of
partitions of n. Hardy and Ramanujan [76] studied the asymptotic growth of p(n)
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as follows:

p(n) ∼ 1

4n
√

3
eπ
√

2n/3 as n→∞. (4.1)

Rademacher [122, 124, 123] improved the work of Hardy and Ramanujan and found
a convergent series for p(n) and Lehmer’s [99, 98] study was on estimation for the
remainder term of the series for p(n). The Hardy-Ramanujan-Rademacher formula
reads

p(n) =

√
12

24n− 1

N∑
k=1

Ak(n)√
k

[(
1− k

µ(n)

)
eµ(n)/k +

(
1 +

k

µ(n)

)
e−µ(n)/k

]
+R2(n,N),

(4.2)
where

µ(n) =
π

6

√
24n− 1, Ak(n) =

∑
h mod k
(h,k)=1

e−2πinh/k+πis(h,k)

with

s(h, k) =
k−1∑
µ=1

(
µ

k
−
⌊µ
k

⌋
− 1

2

)(
hµ

k
−
⌊hµ
k

⌋
− 1

2

)
,

and

|R2(n,N)| < π2N−2/3

√
3

[(
N

µ(n)

)3

sinh
µ(n)

N
+

1

6
−

(
N

µ(n)

)2]
. (4.3)

A sequence {an}n≥0 is said to satisfy the Turán inequlaities or to be log-concave, if

a2
n − an−1an+1 ≥ 0 for all n ≥ 1. (4.4)

Independently Nicolas [111] and DeSalvo and Pak [53, Theorem 1.1] proved that
the partition function p(n) is log-concave for all n ≥ 26, conjectured by Chen [35].
DeSalvo and Pak [53, Theorem 4.1] also proved that for all n ≥ 2,

p(n− 1)

p(n)

(
1 +

1

n

)
>

p(n)

p(n+ 1)
, (4.5)

conjectured by Chen [35]. Further, they improved the rate of decay in (4.5) and
proved that for all n ≥ 7,

p(n− 1)

p(n)

(
1 +

240

(24n)3/2

)
>

p(n)

p(n+ 1)
, (4.6)
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see [53, p. 4.2]. DeSalvo and Pak [53] finally came up with the conjecture that the
coefficient of 1/n3/2 in (4.6) can be improved to π/

√
24; i.e., for all n ≥ 45,

p(n− 1)

p(n)

(
1 +

π√
24n3/2

)
>

p(n)

p(n+ 1)
, (4.7)

which was proved by Chen, Wang and Xie [39, Sec. 2]. Recently, the author along
with Paule, Radu, and Zeng [22, Theorem 7.6] confirmed that the coefficient of 1/n3/2

is π/
√

24, which is optimal; i.e., they proved that for all n ≥ 120,

p(n)2 >

(
1 +

π√
24n3/2

− 1

n2

)
p(n− 1)p(n+ 1). (4.8)

DeSalvo and Pak [53, Theorem 5.1] also established that p(n) satisfies the strong
log-concavity property; i.e., for all n > m > 1,

p(n)2 − p(n−m)p(n+m) > 0. (4.9)

Ono and Bessenrodt [26] extended (4.9) by considering the border case m = n. This
leads to the unveiling of multiplicative properties of the partition function encoded
in the following theorem.

Theorem 4.1.1. [26, Theorem 2.1] If a and b are integers with a, b > 1 and a+b > 8,
then

p(a)p(b) ≥ p(a+ b), (4.10)

with equality holding only for {a, b} = {2, 7}.

Let ∆ be the forward difference operator define by ∆a(n) := a(n+1)−a(n) for a
sequence (a(n))n≥0. It is clear that the log-concavity property for p(n) is equivalent
to say that −∆2 log p(n− 1) > 0 for all n ≥ 26. Equations (4.7) and (4.8) show the
asymptotic growth of −∆2 log p(n− 1). Chen, Wang, and Xie proved the positivity
of (−1)r−1∆r log p(n) along with the estimation of an upper bound.

Theorem 4.1.2. [39, Thm. 3.1 and 4.1] For each r ≥ 1, there exists a positive
integer n(r) such that for all n ≥ n(r),

0 < (−1)r−1∆r log p(n) < log

(
1 +

π√
6

(1

2

)
r−1

1

(n+ 1)r−
1
2

)
. (4.11)
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The above inequalities can be rephrased in the following form:

T∏
i=1

p(n+ si) ≥
T∏
i=1

p(n+ ri), (4.12)

which we call multiplicative inequalities for the partition function. Instead of ap-
plying the Hardy-Ramanujan-Rademacher formula (4.2) and Lehmer’s error bound
(4.3) but with different methodology for different inequalities for p(n) as done in [26,
53, 111, 39], we will see how one can prove all such multiplicative inequalities under
a unified framework so as to decide explicitly N(T ), such that for all n ≥ N(T ),
(4.12) holds. To prove (4.12), it is equivalent to show

T∑
i=1

log p(n+ si) ≥
T∑
i=1

log p(n+ ri), (4.13)

and therefore, an infinite family of inequalities for logarithm of the shifted version
of the partition function is a prerequisite, see Theorems 4.3.9 and 4.3.13. As an
application of Theorem 4.3.9, we shall complete Theorem 4.1.2 (see Theorems 4.4.6
and 4.4.7 below) in the following aspects:

1. by improving the lower bound in (4.11) to show that the rate of decay given
in the upper bound is the optimal one,

2. for each r ≥ 1, computation of n(r) by estimation of error bound based on the
minimal choice of the truncation point w in Theorem 4.3.9,

3. and a full asymptotic expansion for (−1)r−1∆r log p(n). This seems to be inac-
cessible from Theorem 4.1.2 because a key tool in the proof was on the relations
between the higher order differences and derivatives (cf. Prop. 3.5, [39]) due
to Odlyzko [114] which only contributes to the main term in the expansion;

i.e.,
π√
6

(1

2

)
r−1

1

(n+ 1)r−
1
2

.

Even having Theorem 4.3.13 in hand, in order to decide whether (4.12) holds or
not, there are two key factors that remain unexplained. First, an explanation of the
following assumption

T∑
i=1

smi 6=
T∑
i=1

rmi for at least one m ≥ Z≥1. (4.14)
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and an appropriate choice of w, i.e., the truncation point as in Theorem 4.3.13. Now
we move on to see how these two factors are intricately connected through a classical
problem in Diophantine equations known as the Prouhet-Tarry-Escott problem [55,
Chapter XXIV]. The problem originated in a different guise from a letter of Goldbach
[65] to Euler that dates back to 18 July 1750. The Prouhet–Tarry–Escott problem
asks for two distinct tuples of integers (s1, s2, . . . , sT ) and (r1, r2, . . . , rT ) such that

T∑
i=1

ski =
T∑
i=1

rki , for all 0 ≤ k ≤ m− 1 and
T∑
i=1

smi 6=
T∑
i=1

rmi .

We write (s1, . . . , sT )
m
= (r1, . . . , rT ) to denote a solution of the Prouhet–Tarry–Escott

problem. Recently, Merca and Katriel [108] connect the non-trivial linear homoge-
neous partition inequalities with the Prouhet–Tarry–Escott problem. In brevity,
we shall explain why the optimal choice of truncation point w = m + 1, with
(s1, . . . , sT )

m
= (r1, . . . , rT ) for a given (4.12) in Section 4.5.

The rest of the chapter is organized as follows. In Section 4.2, we state preliminary
lemmas and theorems from the work of Paule, Radu, Zeng, and the author [22]. Sec-
tion 4.3 presents a detailed synthesis on derivation of inequalities for log p(n+ s) for
any non-negative integer s that leads to the main result of this chapter, see Theorem
4.3.13. As an application of Theorem 4.3.13, we provide a full asymptotic expansion
of (−1)r−1∆r log p(n) in Section 4.4. In Section 4.5, we work out the steps to verify
multiplicative inequalities for the partition function. Section 4.6 is devoted to derive

an infinite families of inequalities for
T∏
i=1

p(n + si), given in Theorem 4.6.9. Finally

we conclude this chapter with a short discussion on the applications of Theorems
4.3.13 and 4.6.9.

4.2 Set up

Throughout this section, we follow the notations as in [22].

Definition 4.2.1 (Def. 5.1, [22]). For y ∈ R, 0 < y2 < 24, we define

G(y) := − log
(

1− y2

24

)
+
π
√

24

6y

(√
1− y2

24
− 1

)
+ log

(
1− y

π
6

√
24− y2

)
, (4.15)

and its sequence of Taylor coefficients by

G(y) =
∞∑
u=1

guy
u. (4.16)
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Define α :=
π2

36 + π2
.

Lemma 4.2.2 (Lem. 5.4, [22]). Let G(y) =
∑∞

u=1 guy
u be the Taylor expansion of

G(y) as in Definition 4.2.1. Then for n ≥ 1,

g2n =
1

3n23nn
− 1

3n23n+1n

(
−1 +

1

αn

)
, (4.17)

and for n ≥ 0,

g2n+1 =
√

6

[
(−1)n+1

(
1/2

n+ 1

)
π

23n+33n+2
− 1

23n+13nαn(2n+ 1)π

n∑
j=0

αj
(
−1

2
+ j

j

)]
.

(4.18)

Lemma 4.2.3 (Lem. 5.8, [22]). For n ≥ 0, we have

−
√

6

2π23n3nαn(2n+ 1)

(π2

72
+ 1 +

α

2(1− α)

)
≤ g2n+1 ≤ −

√
6

2π23n3nαn(2n+ 1)

(
1 +

α

2

)
.

(4.19)

Lemma 4.2.4 (Lem. 5.9, [22]). For n ≥ 1, we have

− 1

3n23n+1αnn
≤ g2n ≤

1

3n23nαnn

(3α

2
− 1

2

)
. (4.20)

Definition 4.2.5 (Def. 4.3, [22]). For k ∈ Z≥2, define

g(k) :=
1

24

(
62

π2
· ν(k)2 + 1

)
,

where ν(k) := 2 log 6 + (2 log 2)k + 2k log k + 2k log log k +
5k log log k

log k
.

Definition 4.2.6 (Def. 6.4, [22]). For n, U ∈ Z≥1, we define

Pn(U) := − log 4
√

3− log n+ π

√
2n

3
+

U∑
u=1

gu(1/
√
n)u.

Theorem 4.2.7 (Thm 6.6, [22]). Let G(y) =
∑∞

u=1 guy
u as in Definition 4.2.1.

Let g(k) be as in Definition 4.2.5 and Pn(U) as in Definition 4.2.6. If m ≥ 1 and
n > g(2m), then

Pn(2m− 1)− 2

3m23mαmnmm
< log p(n) < Pn(2m− 1) +

1

3m23mαmnmm
; (4.21)
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if m ≥ 2 and n > g(2m− 1), then

Pn(2m− 2)− 7

3m23mαmnm−1/2(2m− 1)
< log p(n) <

Pn(2m− 2) +
2

3m23mαmnm−1/2(2m− 1)
.

(4.22)

In other words, for w ∈ Z>0 with dw/2e ≥ γ0 and n > g(w), we have

Pn(w− 1)− γ1

(24α)dw/2e

( 1√
n

)w
< log p(n) < Pn(w− 1) +

γ2

(24α)dw/2e

( 1√
n

)w
, (4.23)

where

(γ0, γ1, γ2) =

{
(1, 4, 2), if w is even

(2, 7, 2), if w is odd
. (4.24)

Lemma 4.2.8 (Lem 7.3, [22]). For n, s ∈ Z≥1,m ∈ N and n > 2s, let

bm,n(s) :=
4
√
s√

s+m− 1

(
s+m− 1

s− 1

)
1

nm
,

then

− bm,n(s) <
∞∑
k=m

(
−2s−1

2

k

)
1

nk
< bm,n(s) (4.25)

and

0 <
∞∑
k=m

(
−2s−1

2

k

)
(−1)k

nk
< bm,n(s). (4.26)

Lemma 4.2.9 (Lem 7.4, [22]). For n, s ∈ Z≥1,m ∈ N and n > 2s, let

βm,n(s) :=
2

nm

(
s+m− 1

s− 1

)
,

then

− βm,n(s) <
∞∑
k=m

(
−s
k

)
1

nk
< βm,n(s) (4.27)

and

0 <
∞∑
k=m

(
−s
k

)
(−1)k

nk
< βm,n(s). (4.28)
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Lemma 4.2.10 (Lem 7.5, [22]). For m,n, s ∈ Z≥1 and n > 2s, let

cm,n(s) :=
2

m

sm

nm
,

then

− cm,n(s) <
∞∑
k=m

(−1)k+1

k

sk

nk
< cm,n(s) and − cm,n(s) < −

∞∑
k=m

1

k

sk

nk
< 0 (4.29)

and

− cm,n(s)√
m

<

∞∑
k=m

(
1/2

k

)
sk

nk
<
cm,n(s)√

m
and − cm,n(s)√

m
<

∞∑
k=m

(
1/2

k

)
(−1)ksk

nk
< 0.

(4.30)

4.3 Inequalities for log p(n;~s)

In this section, first we prove an infinite family of inequalities for log p(n + s) with
s being a non-negative integer, see Theorem 4.3.9. Starting from Theorem 4.2.7,
we will estimate Pn+s(U) and the error terms given in (4.21) and (4.22), stated in
Lemmas 4.3.3-4.3.6. Finally, generalizing Theorem 4.3.9 by taking into consideration∑T

i=1 log p(n+ si) for (s1, s2, . . . , sT ) ∈ ZT≥0, we obtain Theorem 4.3.13.

Lemma 4.3.1. Let the coefficient sequence (gn)n≥1 be as in Lemma 4.2.2. Then for
all n ≥ 1, we have

|gn| ≤
1

n

1

(24α)bn/2c
. (4.31)

Proof. Observe that for all n ≥ 0,
√

6
2π

(
1 + α

2

)
1

(24α)n(2n+1)
> 0 and 0 <

√
6

2π

(
π2

72
+ 1 +

α
2(1−α)

)
< 1. Using (4.19), we obtain for all n ≥ 0,

− 1

(24α)n(2n+ 1)
< g2n+1 < 0. (4.32)

Since 3α
2
− 1

2
< 0, from (4.20), it follows that for all n ≥ 1,

− 1

(24α)n(2n)
≤ g2n < 0. (4.33)
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From (4.32) and (4.33), we conclude that for all n ≥ 1,

|gn| ≤
1

(24α)bn/2cn
.

Definition 4.3.2. For s ∈ Z≥0, define

δs :=

{
1, if s ≥ 1

0, if s = 0
.

Lemma 4.3.3. For (n, s) ∈ Z≥1 × Z≥0, w ∈ Z≥2, and n > 2s, let

P 1
n,s(w) := − log n+

bw−1
2
c∑

k=1

(−1)ksk

k

( 1√
n

)2k

and E1
n,s(w) :=

2sd
w+1
2
e

dw/2e

( 1√
n

)w
δs,

then
P 1
n,s(w)− E1

n,s(w) ≤ − log(n+ s) ≤ P 1
n,s(w) + E1

n,s(w). (4.34)

Proof. For all n, s ∈ Z≥1, w ∈ Z≥2, and n > 2s, we split log(n+ s) as follows

log(n+ s) = log n+
∞∑
k=1

(−1)k+1

k

sk

nk
= log n+

bw−1
2
c∑

k=1

(−1)k+1

k

sk

nk
+

∞∑
k=dw

2
e

(−1)k+1

k

sk

nk
.

(4.35)
Applying (4.29) with m 7→ dw

2
e, it follows that for all n > 2s,

− 2

dw/2e

( s
n

)dw/2e
<

∞∑
k=dw

2
e

(−1)k+1

k

sk

nk
<

2

dw/2e

( s
n

)dw/2e
. (4.36)

Since for all s ∈ Z≥0, sdw/2e ≤ sd
w+1
2
e, from (4.35) and (4.36), it follows that

P 1
n,s(w)− E1

n,s(w) ≤ − log(n+ s) ≤ P 1
n,s(w) + E1

n,s(w). (4.37)

Observe that equality holds when s = 0.
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Lemma 4.3.4. For (n, s) ∈ Z≥1 × Z≥0, w ∈ Z≥2, and n > 2s, let

P 2
n,s(w) := π

√
2n

3
+ π

√
2

3

bw
2
c∑

k=1

(
1/2

k

)
sk
( 1√

n

)2k−1

and E2
n,s(w) :=

6sd
w+1
2
e

dw/2e

( 1√
n

)w
δs,

then

P 2
n,s(w)− E2

n,s(w) ≤ π

√
2n+ 2s

3
≤ P 2

n,s(w) + E2
n,s(w). (4.38)

Proof. For all n, s ∈ Z≥1, w ∈ Z≥2, and n > 2s, we split π

√
2n+ 2s

3
as follows

π

√
2n+ 2s

3
= π

√
2n

3
+ π

√
2

3

bw
2
c∑

k=1

(
1/2

k

)
sk
( 1√

n

)2k−1

+ π

√
2n

3

∞∑
k=bw+2

2
c

(
1/2

k

)
sk

nk
.

(4.39)
Applying (4.30) with m 7→ bw+2

2
c, it follows that for all n > 2s,

− 2(
bw+2

2
c
)3/2

( s
n

)bw+2
2
c
<

∞∑
k=bw+2

2
c

(
1/2

k

)
sk

nk
<

2(
bw+2

2
c
)3/2

( s
n

)bw+2
2
c
. (4.40)

Therefore,

−2π

√
2

3

sb
w+2
2
c(

bw+2
2
c
)3/2

( 1√
n

)2bw+2
2
c−1

< π

√
2n

3

∞∑
k=bw+2

2
c

(
1/2

k

)
sk

nk

< 2π

√
2

3

sb
w+2
2
c(

bw+2
2
c
)3/2

( 1√
n

)2bw+2
2
c−1

.

(4.41)

Now for all s ∈ Z≥0,

π

√
2

3

sb
w+2
2
c(

bw+2
2
c
)3/2

( 1√
n

)2bw+2
2
c−1

<
6sd

w+1
2
e

dw/2e

( 1√
n

)w
.

From (4.39) and (4.41), it follows that

P 2
n,s(w)− E2

n,s(w) ≤ π

√
2n+ 2s

3
≤ P 2

n,s(w) + E2
n,s(w), (4.42)

with equality holds for s = 0.

90



Lemma 4.3.5. For (n, s) ∈ Z≥1 × Z≥0, w ∈ Z≥2, and n > 2s, let

g`(s; t) := g`

(
−`/2

t− b`/2c

)
st−b

`
2
c for all ` ∈ Z≥1,

P 3
n,s(w) :=

w−1∑
u=1

gu

( 1√
n

)u
+

bw−2
2
c∑

t=1

t−1∑
u=0

g2u+1(s; t)
( 1√

n

)2t+1

+

bw−1
2
c∑

t=2

t−1∑
u=1

g2u(s; t)
( 1√

n

)2t

,

and

E3
n,s(w) :=

29

w

(
s+

1

24α

)dw−1
2
e+1( 1√

n

)w
δs,

then

P 3
n,s(w)− E3

n,s(w) ≤
w−1∑
u=1

gu

( 1√
n+ s

)u
≤ P 2

n,s(w) + E3
n,s(w). (4.43)

Proof. For all n, s ∈ Z≥1, w ∈ Z≥2, and n > 2s, we split
∑w−1

u=1 gu(1/
√
n+ s)u as

w−1∑
u=1

gu

( 1√
n+ s

)u
=

w−1∑
u=1

gu

( 1√
n

)u ∞∑
k=0

(
−u/2
k

)
sk
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=
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u=1
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( 1√
n

)u
+
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u=1
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( 1√
n

)u ∞∑
k=1

(
−u/2
k

)
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=
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u=1
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( 1√
n

)u
+

w−1∑
u=1
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∞∑
k=1

(
−u/2
k

)
sk
( 1√

n

)2k+u

=
w−1∑
u=1

gu

( 1√
n

)u
+

bw−2
2
c∑

u=0

g2u+1

∞∑
k=1

(
−2u+1

2

k

)
sk
( 1√

n

)2k+2u+1

+

bw−1
2
c∑

u=1

g2u

∞∑
k=1

(
−u
k

)
sk
( 1√

n

)2k+2u

. (4.44)

91



Now,
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2
c∑

u=0

g2u+1

∞∑
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(
−2u+1

2

k

)
sk
( 1√

n

)2k+2u+1

=

bw−2
2
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g2u+1

∞∑
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2

t− u
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st−u

( 1√
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=

bw−2
2
c∑
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g2u+1

bw−2
2
c∑
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2

t− u

)
st−u

( 1√
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)2t+1

+

bw−2
2
c∑
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∞∑
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2
e
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2

t− u

)
st−u

( 1√
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=

bw−2
2
c∑
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t−1∑
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g2u+1(s; t)
( 1√
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+
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∞∑
t=dw−1

2
e−u+1

g2u−1

(
−2u−1

2

t

)
st
( 1√

n

)2t+2u−1

︸ ︷︷ ︸
:=So(w,n,s)

.

(4.45)

Next, we proceed to estimate the absolute value of the error sum So(w, n, s) for
s ∈ Z≥1.

|So(w, n, s)|

≤
dw−1

2
e∑

u=1

|g2u−1|
( 1√

n

)2u−1

∣∣∣∣∣
∞∑

t=dw−1
2
e−u+1

(
−2u−1

2

t

)
st
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∣∣∣∣∣
< 4

dw−1
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|g2u−1|
( 1√

n

)2u−1
√

u

dw−1
2
e

(
dw−1

2
e

u− 1

)( s
n

)dw−1
2
e−u+1

(
by substitution (m, s, n) 7→

(⌈w − 1

2

⌉
− u+ 1, u,

n

s

)
in (4.25)

)

≤ 4

(dw−1
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(
dw−1

2
e

u− 1

)
1
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)( 1√
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w−1
2
e+1

92



≤ 4
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(2u− 1)(24α)u−1

(
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e
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)
1

su

)( 1√
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(
by Lemma 4.3.1
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(
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≤ 8

3(u+ 1)
for all u ≥ 1

)

=
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1

2
(
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)dw−1
2
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(4.46)

Similar to (4.45), we get
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∞∑
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∞∑
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=
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n

)2t+2u

︸ ︷︷ ︸
:=Se(w,n,s)

. (4.47)
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Consequently for s ∈ Z≥1,

|Se(w, n, s)| ≤
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2
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( 1√

n
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(
by substitution (m, s, n) 7→

(⌈w
2

⌉
− u, u, n

s

)
in (4.27)

)

= 2

(bw−1
2
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(
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)
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2
e
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(
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2
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)
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(24αs)u

)
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e
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)w (
by Lemma 4.3.1

)

= 2

(dw
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(
dw
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)
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)
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e
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=
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− 1−
( 1

24αs

)dw
2
e
)
sd

w
2
e
( 1√

n

)w
<

1

w

(
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1

24α

)dw−1
2
e+1( 1√

n

)w
. (4.48)

From (4.44), (4.45), and (4.47), we obtain

w−1∑
u=1

gu

( 1√
n+ s

)u
− P 3

n,s(w) = So(w, n, s) + Se(w, n, s), (4.49)

and taking absolute on both sides of (4.49) and applying (4.46) and (4.48), it follows
that ∣∣∣w−1∑

u=1

gu

( 1√
n+ s

)u
− P 3

n,s(w)
∣∣∣ =

∣∣∣So(w, n, s) + Se(w, n, s)
∣∣∣

≤
∣∣∣So(w, n, s)∣∣∣+

∣∣∣Se(w, n, s)∣∣∣
<
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w

(
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1

24α

)dw−1
2
e+1( 1√

n

)w
.

(4.50)
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Note that in (4.43), the equality holds for s = 0 because first, P 3
n,0(w) = 0 and

secondly, the error term So(w, n, 0) (resp. Se(w, n, 0)) in (4.45) (resp. in (4.47)) is
identically zero and therefore, we conclude that E3

n,0(w) = 0.

Lemma 4.3.6. Let γ1, γ2 as in Equation (4.24). For (n, s) ∈ Z≥1 × Z≥0, and w ∈
Z≥2, then

− γ1

(24α)dw/2ew

( 1√
n

)w
≤ − γ1

(24α)dw/2ew

( 1√
n+ s

)w
(4.51)

and

γ2

(24α)dw/2ew

( 1√
n+ s

)w
≤ γ2

(24α)dw/2ew

( 1√
n

)w
. (4.52)

Proof. The proof of both (4.51) and (4.52) is immediate from the fact that 1√
n+s
≤

1√
n

for all (n, s) ∈ Z≥1 × Z≥0.

Definition 4.3.7. Let the coefficient sequence (gn)n≥1 be as in Lemma 4.2.2 and
(gn(s; t))n≥1 be as in Lemma 4.3.5. Then for (n, s) ∈ Z≥1 × Z≥0 and U ∈ Z≥1, we
define

Pn,s(U) := − log 4
√

3− log n+ π

√
2n

3
+

U∑
u=1

g̃u,s

( 1√
n

)u
, (4.53)

where

g̃2u,s :=
(−s)u

u
+ g2u +

u−1∑
k=1

g2k(s;u) for all 1 ≤ u ≤ bU/2c

and

g̃2u+1,s := π

√
2

3

(
1/2

u+ 1

)
su+1 + g2u+1 +

u−1∑
k=0

g2k+1(s;u) for all 0 ≤ u ≤ b(U − 1)/2c.

Definition 4.3.8. Let γ1, γ2 be as in (4.24). For (n, s) ∈ Z≥1 × Z≥0, w ∈ Z≥2, and
n > 2s, we define

EUn,s(w) :=

(
45
(
s+

1

24α

)dw+1
2
e
δs +

γ2

(24α)dw/2e

)
1

w

( 1√
n

)w
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and

ELn,s(w) :=

(
45
(
s+

1

24α

)dw+1
2
e
δs +

γ1

(24α)dw/2e

)
1

w

( 1√
n

)w
.

Theorem 4.3.9. Let Pn,s(U) be as in Definition 4.3.7 and ELn,s(w), EUn,s(w) be as in
Definition 4.3.8. If (n, s) ∈ Z≥1 × Z≥0, w ∈ Z≥2, and n > max{g(w)− s, 2s}, then

Pn,s(w − 1)− ELn,s(w) < log p(n+ s) < Pn,s(w − 1) + EUn,s(w). (4.54)

Proof. From (4.23), it follows that for dw
2
e ≥ γ0 and n > g(w)− s,

Pn+s(w−1)− γ1

(24α)dw/2ew

( 1√
n+ s

)w
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γ2

(24α)dw/2ew
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,

(4.55)
where (by Definition 4.2.6)

Pn+s(w − 1) = − log 4
√

3− log(n+ s) + π

√
2(n+ s)

3
+
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u=1
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( 1√
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)u
.

Applying Lemma 4.3.6 into (4.55), we obtain

Pn+s(w−1)− γ1

(24α)dw/2ew

( 1√
n

)w
< log p(n+s) < Pn+s(w−1)+
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(24α)dw/2ew
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)w
.

(4.56)
Invoking Lemmas 4.3.3, 4.3.4, and 4.3.5 into (4.56), it follows that

− log 4
√

3 +
3∑
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P i
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(4.57)

For s ≥ 1,

3∑
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Ei
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)w
=
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=

(
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2
e

dw/2e
+
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, (4.58)

and for s = 0,
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Similarly, for s ≥ 1,

3∑
i=1

Ei
n,s(w) +

γ1

(24α)dw/2ew

( 1√
n

)w
<

(
45
(
s+

1

24α

)dw+1
2
e

+
γ1

(24α)dw/2e

)
1

w

( 1√
n

)w
,

(4.60)

and for s = 0,
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=

γ1

(24α)dw/2ew

( 1√
n

)w
. (4.61)

Putting (4.58)-(4.61) together into (4.57), we get

− log 4
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P i
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√
3+

3∑
i=1

P i
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(4.62)
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From Lemmas 4.3.3-4.3.5, it follows that
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√
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= Pn,s(w − 1). (4.63)

From (4.62) and (4.63), we conclude the proof of (4.54).

Next, we proceed to estimate
∑T

i=1 log p(n+ si).

Definition 4.3.10. For n, T ∈ Z≥1 and ~s := (s1, s2, . . . , sT ) ∈ ZT≥0, we define

log p(n;~s) :=
T∑
i=1

log p(n+ si).

Definition 4.3.11. Let the coefficient sequence (gn)n≥1 be as in Lemma 4.2.2, (gn(s; t))n≥1

be as in Lemma 4.3.5, and ~s be as in Definition 4.3.10. For n, T ∈ Z≥1 and U ∈ Z≥1,
we define

Pn,~s(U) := −T · log 4
√

3− T · log n+ T · π
√
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3
+
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, (4.64)
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where

g̃2u,~s :=
1

u

T∑
i=1

(−si)u + T · g2u +
T∑
i=1

u−1∑
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i=1

su+1
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Definition 4.3.12. Let γ1, γ2 be as in (4.24) and ~s be as in Definition 4.3.10. For
each {si}1≤i≤T , δsi be as in Definition 4.3.2. For n, T ∈ Z≥1, w ∈ Z≥2, and n > 2si,
we define
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(
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T · γ1

(24α)dw/2e

)
1

w

( 1√
n

)w
.

A generalized version of Theorem 4.3.9 is as follows:

Theorem 4.3.13. Let log p(n;~s) be as in Definition 4.3.10, Pn,~s(U) be as in Defi-
nition 4.3.11, and let g(k) be as in Definition 4.2.5. Let ELn,~s(w) and EUn,~s(w) be as
in Definition 4.3.12. If n, T ∈ Z≥1, w ∈ Z≥2, and

n > max
1≤i≤T

{g(w)− min
1≤i≤T

{si}, 2si} := g(w;~s),

then
Pn,~s(w − 1)− ELn,~s(w) < log p(n;~s) < Pn,~s(w − 1) + EUn,~s(w). (4.65)

Proof. Applying (4.54) for each {si}1≤i≤T and summing up, we get (4.65).

Remark 4.3.14. A few applications of Theorem 4.3.13 are listed below.

1. Choosing w = 5 (resp. w = 7), we obtain (p(n))n≥26 is log-concave (resp.
(4.7)).
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2. Define un := p(n)p(n+2)
p(n+1)2

and let N be any positive integer. Then choosing w = N ,
we have a full asymptotic expansion of log un with a precise estimation of the
error bound after truncation of the asymptotic expansion at a point N .

3. Applying ~s = {m,m} and ~r = {0, 2m} to (4.65), and estimation of

Pn,~s(4) + ELn,~s(5)− Pn,~r(4)− EUn,~s(5),

leads to the strong log-concavity property of p(n).

4. Without loss of generality, assume b = λa with λ ≥ 1 in Theorem 4.1.1.
By making the substitutions (n,~s) = (a, 0), (n,~s) = (λa, 0), and (n,~r) =
(a(1 + λ), 0) to (4.65), we can retrieve (4.10).

4.4 Asymptotics of (−1)r−1∆r log p(n)

Lemma 4.4.1. Let Pn,s(w − 1) be as in Theorem 4.3.9. Then for all r ≥ 2,

r∑
i=0

(
r

i

)
(−1)i+1Pn,i(2r) = Cr

( 1√
n

)2r−1

− (r − 1)!
( 1√

n

)2r

, (4.66)

where Cr =
π√
6

(1

2

)
r−1

and (a)k is the standard notation for the rising factorial.

Proof. From Definition 4.3.7, it follows that

r∑
i=0

(
r

i

)
(−1)i+1Pn,i(2r)

=
r∑
i=0

(
r

i

)
(−1)i+1

(
− log 4

√
3− log n+

√
2n

3
+

2r∑
u=1

g̃u,i

( 1√
n

)u)

=
r∑
i=0

(
r

i

)
(−1)i+1

2r∑
u=1

g̃u,i

( 1√
n

)u
=

r∑
i=0

(
r

i

)
(−1)i+1

2r−2∑
u=1

g̃u,i

( 1√
n

)u
+

r∑
i=0

(
r

i

)
(−1)i+1g̃2r−1,i

( 1√
n

)2r−1

+
r∑
i=0

(
r

i

)
(−1)i+1g̃2r,i

( 1√
n

)2r

. (4.67)
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Following the notation from [68], here
{
n
m

}
denotes the Stirling number of second

kind. For all integers 1 ≤ u ≤ 2r − 2 and u ≡ 0 (mod 2), we have

r∑
i=0

(
r

i

)
(−1)i+1

r−1∑
u=1

g̃2u,i

( 1√
n

)2u

=
r∑
i=0

(
r

i

)
(−1)i+1

r−1∑
u=1

[
(−i)u

u
+ g2u +

u−1∑
k=1

g2k(i;u)

]( 1√
n

)2u

=
r−1∑
u=1

(−1)u

u
(−1)r+1r!

{
u

r

}( 1√
n

)2u

+
r−1∑
u=1

u−1∑
k=1

g2k

(
−k
u− k

) r∑
i=0

(
r

i

)
(−1)i+1iu−k

( 1√
n

)2u

=
r−1∑
u=1

(−1)u

u
(−1)r+1r!

{
u

r

}( 1√
n

)2u

+
r−1∑
u=1

u−1∑
k=1

g2k

(
−k
u− k

)
(−1)r+1r!

{
u− k
r

}( 1√
n

)2u

= 0

(
as

{
n

m

}
= 0 for all n < m

)
. (4.68)

Similarly for all integers 1 ≤ u ≤ 2r − 2 and u ≡ 1 (mod 2), we obtain

r∑
i=0

(
r

i

)
(−1)i+1

r−2∑
u=0

g̃2u+1,i

( 1√
n

)2u+1

=
r∑
i=0

(
r

i

)
(−1)i+1

r−2∑
u=0

[
π

√
2

3

(
1/2

u+ 1

)
iu+1 + g2u+1 +

u−1∑
k=0

g2k+1(i;u)

]( 1√
n

)2u+1

=
r−2∑
u=0

π

√
2

3

(
1/2

u+ 1

)
(−1)r+1r!

{
u+ 1

r

}( 1√
n

)2u+1

+
r−2∑
u=0

u−1∑
k=0

g2k+1

(
−k − 1/2

u− k

)
(−1)r+1r!

{
u− k
r

}( 1√
n

)2u+1

= 0

(
as

{
n

m

}
= 0 for all n < m

)
. (4.69)
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From (4.68) and (4.69), it follows that for all 1 ≤ u ≤ 2r − 2,

r∑
i=0

(
r

i

)
(−1)i+1

2r−2∑
u=1

g̃u,i

( 1√
n

)u
= 0.

Now
r∑
i=0

(
r

i

)
(−1)i+1g̃2r−1,i

( 1√
n

)2r−1

=
r∑
i=0

(
r

i

)
(−1)i+1

[
π

√
2

3

(
1/2

r

)
ir + g2r−1 +

r−2∑
k=0

g2k+1(i; r − 1)

]( 1√
n

)2r−1

=

[
π

√
2

3

(
1/2

r

)
(−1)r+1r!

{
r

r

}
+

r−2∑
k=0

g2k+1

(
−k − 1/2

r − 1− k

)
(−1)r+1r!

{
r − 1− k

r

}]( 1√
n

)2r−1

=
π√
6

(1

2

)
r−1

( 1√
n

)2r−1
(

since

{
r − 1− k

r

}
= 0 for all 0 ≤ k ≤ r − 2

)
. (4.70)

We finish the proof by showing that

r∑
i=0

(
r

i

)
(−1)i+1g̃2r,i

( 1√
n

)2r

=
r∑
i=0

(
r

i

)
(−1)i+1

[
(−i)r

r
+ g2r +

r−1∑
k=1

g2k(i; r)

]( 1√
n

)2r

=

[
−(r − 1)! +

r−1∑
k=1

g2k

(
−k
r − k

)
(−1)r+1r!

{
r − k
r

}]( 1√
n

)2r

= −(r − 1)!
( 1√

n

)2r

. (4.71)

Definition 4.4.2. Let γ1 be as in (4.24) and Cr be as in Lemma 4.4.1. Then for all
r ≥ 2, define

L1(r) :=

(
γ1

(12α)r+1
+ 45

r∑
i=1

(
r

i

)(
i+

1

24α

)r+1
)

1

2r + 1
,

L(r) := (r − 1)! + L1(r),

and

NL(r) := max

{(L(r)

Cr

)2

, g(2r + 1)

}
.
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Lemma 4.4.3. Let L(r), NL(r) be as in Definition 4.4.2 and Cr be as in Lemma
4.4.1. Then for all n > NL(r),

(−1)r−1∆r log p(n) > log

(
1 + Cr

( 1√
n

)2r−1

− L(r)
( 1√

n

)2r
)
. (4.72)

Proof. We split (−1)r−1∆r log p(n) as follows:

(−1)r−1∆r log p(n) =
r∑
i=0

(
r

i

)
(−1)i+1 log p(n+ i)

=

b r−1
2
c∑

i=0

(
r

2i+ 1

)
log p(n+ 2i+ 1)−

b r
2
c∑

i=0

(
r

2i

)
log p(n+ 2i).

(4.73)

Applying Theorem 4.3.9 with w = 2r+ 1 to (4.73), we have for all n > max
0≤i≤r

{g(2r+

1)− i, 2i} = g(2r + 1),

(−1)r−1∆r log p(n)

>
r∑
i=0

(
r

i

)
(−1)i+1Pn,i(2r)−

b r−1
2
c∑

i=0

(
r

2i+ 1

)
ELn,2i+1(2r + 1)−

b r
2
c∑

i=0

(
r

2i

)
EUn,2i(2r + 1)

= Cr

( 1√
n

)2r−1

− (r − 1)!
( 1√

n

)2r

−
b r−1

2
c∑

i=0

(
r

2i+ 1

)
ELn,2i+1(2r + 1)

−
b r
2
c∑

i=0

(
r

2i

)
EUn,2i(2r + 1)

(
by Lemma 4.4.1

)
.

(4.74)

From Definition 4.3.8, it is clear that EUn,s(w) < ELn,s(w) because γ2 < γ1. Therefore,

b r−1
2
c∑

i=0

(
r

2i+ 1

)
ELn,2i+1(2r + 1) +

b r
2
c∑

i=0

(
r

2i

)
EUn,2i(2r + 1) <

r∑
i=0

(
r

i

)
ELn,i(2r + 1),(4.75)

and
r∑
i=0

(
r

i

)
ELn,i(2r + 1) = L1(r)

( 1√
n

)2r+1

. (4.76)
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From (4.74) and (4.76), it follows that

(−1)r−1∆r log p(n) > Cr

( 1√
n

)2r−1

− (r − 1)!
( 1√

n

)2r

− L1(r)
( 1√

n

)2r+1

> Cr

( 1√
n

)2r−1

− L(r)
( 1√

n

)2r

, (4.77)

and consequently for all n > NL(r), we get

(−1)r−1∆r log p(n) > log

(
1 + Cr

( 1√
n

)2r−1

− L(r)
( 1√

n

)2r
)
.

Definition 4.4.4. Let L1(r) be as in Definition 4.4.2 and Cr be as in Lemma 4.4.1.
Then for all r ≥ 2, define

NU(r) := max

{(L1(r) + 1

(r − 1)!

)2

,
(C2

r

2

)2/2r−3

, g(2r + 1)

}
.

Lemma 4.4.5. Let L1(r) be as in Definition 4.4.2, Cr be as in Lemma 4.4.1, and
NU(r) be as in Definition 4.4.4. Then for all n > NU(r),

(−1)r−1∆r log p(n) < log

(
1 + Cr

( 1√
n

)2r−1
)
. (4.78)

Proof. Applying Theorem 4.3.9 with w = 2r + 1 to (4.73), we have for all n >
g(2r + 1),

(−1)r−1∆r log p(n)

<
r∑
i=0

(
r

i

)
(−1)i+1Pn,i(2r) +

b r−1
2
c∑

i=0

(
r

2i+ 1

)
EUn,2i+1(2r + 1) +

b r
2
c∑

i=0

(
r

2i

)
ELn,2i(2r + 1)

< Cr

( 1√
n

)2r−1

− (r − 1)!
( 1√

n

)2r

+
r∑
i=0

(
r

i

)
ELn,i(2r + 1)

(
by Lemma 4.4.1

)
= Cr

( 1√
n

)2r−1

− (r − 1)!
( 1√

n

)2r

+ L1(r)
( 1√

n

)2r+1

. (4.79)
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For all n > NU(r), it follows that

−(r − 1)!
( 1√

n

)2r

+ L1(r)
( 1√

n

)2r+1

< − C2
r

2 n2r−1
. (4.80)

From (4.79) and (4.80), it follows that for all n > NU(r),

(−1)r−1∆r log p(n) < log

(
1 + Cr

( 1√
n

)2r−1
)
.

Theorem 4.4.6. Let L(r), NL(r) be as in Definition 4.4.2 and NU(r) be as in Defini-

tion 4.4.4. Let Cr be as in Lemma 4.4.1. Then for all n > N(r) := max
{
NL(r), NU(r)

}
,

log

(
1+Cr

( 1√
n

)2r−1

−L(r)
( 1√

n

)2r
)
< (−1)r−1∆r log p(n) < log

(
1+Cr

( 1√
n

)2r−1
)
.

(4.81)

Proof. Lemmas 4.4.3 and 4.4.5 together imply (4.81).

Theorem 4.4.7. For all r ≥ 2,

(−1)r−1∆r log p(n) ∼
n→∞

∞∑
u=2r−1

Gu

( 1√
n

)u
, (4.82)

with for all u ≥ 1

G2u =

[
(−1)u

u

{
u

r

}
+

u−r∑
k=1

g2k

(
−k
u− k

){
u− k
r

}]
(−1)r+1r! for all u ≥ r (4.83)

and for all u ≥ r − 1,

G2u+1 =

[
π

√
2

3

(
1/2

u+ 1

){
u+ 1

r

}
+

u−r∑
k=0

g2k+1

(
−k − 1/2

u− k

){
u− k
r

}]
(−1)r+1r!.

(4.84)
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Proof. Following (4.67) and letting w →∞, we obtain

(−1)r−1∆r log p(n) ∼
n→∞

∞∑
u=2r−1

r∑
i=0

(
r

i

)
(−1)i+1g̃u,i

( 1√
n

)u
. (4.85)

For all u ≥ 2r − 1 and u ≡ 0 (mod 2), we get

r∑
i=0

(
r

i

)
(−1)i+1g̃2u,i =

[
(−1)u

u

{
u

r

}
+

u−1∑
k=1

g2k

(
−k
u− k

){
u− k
r

}]
(−1)r+1r!

=

[
(−1)u

u

{
u

r

}
+

u−r∑
k=1

g2k

(
−k
u− k

){
u− k
r

}]
(−1)r+1r!.

Similarly, for all u ≥ 2r − 1 and u ≡ 1 (mod 2), it follows that

r∑
i=0

(
r

i

)
(−1)i+1g̃2u+1,i

=

[
π

√
2

3

(
1/2

u+ 1

){
u+ 1

r

}
+

u−r∑
k=0

g2k+1

(
−k − 1/2

u− k

){
u− k
r

}]
(−1)r+1r!.

4.5 A framework to verify multiplicative inequal-

ities for p(n)

Here we list down the steps in order to make a decision on whether a given multi-
plicative inequality holds or not.

• (Step 0): Given
T∏
i=1

p(n + si) and
T∏
i=1

p(n + ri) with T ≥ 1. Without loss

of generality, assume that si, ri are non-negative integers for all 1 ≤ i ≤ T .
Transform the products into additive ones by applying the natural logarithm;

i.e.,
T∑
i=1

log p(n+ si) and
T∑
i=1

log p(n+ ri).

• (Step 1): Choose w = m + 1, where (s1, . . . , sT )
m
= (r1, . . . , rT ). From (4.65),

we observe that for each 1 ≤ i ≤ T , log p(n+ si) and log p(n+ ri) has the main
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term Pn,~s(w−1) and Pn,~r(w−1) respectively. Consequently, each of these main

terms are dominated by T · c
T∑
i=1

√
n+ si and T · c

T∑
i=1

√
n+ ri with c = π

√
2/3

respectively. Therefore, in order to choose w, it is enough to compute the

Taylor expansion of
T∑
i=1

(√
n+ si −

√
n+ si

)
which is given by:

T∑
i=1

(√
n+ si −

√
n+ si

)
=

∞∑
m=1

(
1/2
m

)
√
n

2m−1

T∑
i=1

(smi − rmi ). (4.86)

So our optimal choice is such minimal m ≥ 1 so that
T∑
i=1

(smi − rmi ) 6= 0.

• (Step 2): Applying w = m + 1 as in the previous step to Theorem 4.3.13, it
remains to verify whether

Pn,~s(m)− ELn,~s(m+ 1) > Pn,~r(m) + EUn,~r(m+ 1) (4.87)

or
Pn,~r(m)− ELn,~r(m+ 1) > Pn,~s(m) + EUn,~s(m+ 1), (4.88)

in order to decide whether
T∑
i=1

log p(n+ si) ≥
T∑
i=1

log p(n+ ri) or
T∑
i=1

log p(n+

ri) ≥
T∑
i=1

log p(n+ si) respectively.

4.6 Inequalities for p(n;~s)

Definition 4.6.1. Let g̃u,~s be as in Definition 4.3.11, and ~s be as in Definition
4.3.10. For n, T, U ∈ Z≥1, define

M(n;T ) :=

(
eπ
√

2n/3

4n
√

3

)T

,

and

P̃n,~s(U) := exp

(
U∑
u=1

g̃u,~s

( 1√
n

)u)
.
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Definition 4.6.2. Let γ1, γ2 be as in (4.24) and ~s be as in Definition 4.3.10. For
each {si}1≤i≤T , δsi be as in Definition 4.3.2. For n, T ∈ Z≥1, w ∈ Z≥2, and n > 2si,
we define

CU(w;~s) :=

(
45

T∑
i=1

(
si +

1

24α

)dw+1
2
e
δsi +

T · γ2

(24α)dw/2e

)
1

w

and

CL(w;~s) :=

(
45

T∑
i=1

(
si +

1

24α

)dw+1
2
e
δsi +

T · γ1

(24α)dw/2e

)
1

w
.

Lemma 4.6.3. Let log p(n;~s) be as in Definition 4.3.10, and let g(k) be as in Def-

inition 4.2.5. Let M(n;T ) and P̃n,~s(U) be as in Definition 4.6.1. Let g(w;~s) be as
in Theorem 4.3.13, and CL(w;~s), CU(w;~s) be as in Definition 4.6.2. If n, T ∈ Z≥1,
w ∈ Z≥2, and

n > max

{
g(w;~s),

(
CL(w;~s)

)2/w

,
(
CU(w;~s)

)2/w
}

:= N1(w;~s),

then

M(n;T )P̃n,~s(w − 1)

(
1− CL(w;~s)

( 1√
n

)w)
< p(n;~s) <

M(n;T )P̃n,~s(w − 1)

(
1 + 2 CU(w;~s)

( 1√
n

)w)
.

(4.89)

Proof. Applying the exponential function on both sides of the inequality (4.65), we
get for all n > g(w;~s),

M(n;T )P̃n,~s(w − 1)e−E
L
n,~s

(w) < p(n;~s) <M(n;T )P̃n,~s(w − 1)eE
U
n,~s

(w). (4.90)

Now for all n > max

{(
CL(w;~s)

)2/w

, CU(w;~s)
)2/w

}
, it follows that

0 < EUn,~s(w) < 1 and 0 < EUn,~s(w) < 1. (4.91)

For all 0 < x < 1, we know that ex < 1 + 2x and e−x > 1− x. Therefore from (4.91)
and following Definition 4.3.12, we finally have

eE
U
n,~s

(w) < 1 + 2 CU(w;~s)
( 1√

n

)w
and e−E

L
n,~s

(w) > 1− CL(w;~s)
( 1√

n

)w
. (4.92)

Equations (4.90) and (4.92) together imply (4.89).
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Definition 4.6.4. For k ∈ Z≥0, w ≥ 2, and ~̀ := (`1, . . . , `w−1), define

X(k) :=
{
~̀ ∈ Zw−1

≥0 :
w−1∑
u=1

`u = k
}
,

XM(k) :=
{
~̀ ∈ X(k) : 0 ≤

w−1∑
u=1

u`u ≤ w − 1
}
,

and

XE(k) :=
{
~̀ ∈ X(k) :

w−1∑
u=1

u`u ≥ w
}
.

Definition 4.6.5. Let X(k) and XM(k) be as in Definition 4.6.4 and g̃u,~s be as in
Definition 4.3.11. Then for all w ≥ 2, define

P̂n,~s(w − 1) :=
w−1∑
k=0

1

k!

∑
~̀∈XM(k)

F (k;w;~s)
( 1√

n

)w−1∑
u=1

u`u
,

and

Ên,~s(w − 1) :=
w−1∑
k=0

1

k!

∑
~̀∈XE(k)

F (k;w;~s)
( 1√

n

)w−1∑
u=1

u`u
,

where

F (k;w;~s) :=

(
k

`1, . . . , `w−1

) w−1∏
u=1

(
g̃u,~s

)`u
,

with
(

k
`1,...,`w−1

)
= k!

`1!···`w−1!
is a multinomial coefficient.

Definition 4.6.6. Let XE(k) be as in Definition 4.6.4 and F (k;w;~s) be as in Defi-
nition 4.6.5 and g̃u,~s be as in Definition 4.3.11. For w ≥ 2, define

E(w;~s) :=
w−1∑
k=0

1

k!

∑
~̀∈XE(k)

∣∣∣F (k;w;~s)
∣∣∣+ 3

(∣∣g̃1,~s

∣∣+ 1
)w
.
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Lemma 4.6.7. Let P̃n,~s(U) be as in Definition 4.6.1 and XE(k) be as in Definition

4.6.4. Let P̂n,~s(w − 1), P̂n,~s(w − 1), and F (k;w;~s) be as in Definition 4.6.5. Let
E(w;~s) be as in Definition 4.6.6. Then for all w ≥ 2 and

n > max
1≤u≤w−1

{(
(w − 1)

∣∣g̃u,~s∣∣)2/u
}

:= N2(w;~s),

we have ∣∣∣P̃n,~s(w − 1)− P̂n,~s(w − 1)
∣∣∣ < E(w;~s)

( 1√
n

)w
. (4.93)

Proof. Expanding P̃n,~s(w − 1) and splitting it as follows:

P̃n,~s(w − 1) = P̂n,~s(w − 1) + Ên,~s(w − 1) +
∞∑
k=w

1

k!

∑
~̀∈X(k)

F (k;w;~s)
( 1√

n

)w−1∑
u=1

u`u

= P̂n,~s(w − 1) + Ên,~s(w − 1) +
∞∑
k=w

1

k!

(
w−1∑
u=1

g̃u,~s√
n
u

)k

. (4.94)

Therefore∣∣∣P̃n,~s(w − 1)− P̂n,~s(w − 1)
∣∣∣

≤
∣∣∣Ên,~s(w − 1)

∣∣∣+

(
w−1∑
u=1

∣∣g̃u,~s∣∣√
n
u

)w ∞∑
k=0

1

(k + w)!

(
w−1∑
u=1

∣∣g̃u,~s∣∣√
n
u

)k

=
∣∣∣Ên,~s(w − 1)

∣∣∣+
( 1√

n

)w(∣∣g̃1,~s

∣∣+
w−2∑
u=1

∣∣g̃u+1,~s

∣∣
√
n
u

)w ∞∑
k=0

1

(k + w)!

(
w−1∑
u=1

∣∣g̃u,~s∣∣√
n
u

)k

<
∣∣∣Ên,~s(w − 1)

∣∣∣+
( 1√

n

)w(∣∣g̃1,~s

∣∣+ 1
)w ∞∑

k=0

1

(k + w)!

(
since n > N2(w;~s)

)

≤
∣∣∣Ên,~s(w − 1)

∣∣∣+

(∣∣g̃1,~s

∣∣+ 1
)w

w!

( 1√
n

)w ∞∑
k=0

1

k!

<
∣∣∣Ên,~s(w − 1)

∣∣∣+ 3

(∣∣g̃1,~s

∣∣+ 1
)w

w!

( 1√
n

)w
. (4.95)
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Now

∣∣∣Ên,~s(w − 1)
∣∣∣ ≤ w−1∑

k=0

1

k!

∑
~̀∈XE(k)

∣∣∣F (k;w;~s)
∣∣∣( 1√

n

)w−1∑
u=1

u`u

≤
w−1∑
k=0

1

k!

∑
~̀∈XE(k)

∣∣∣F (k;w;~s)
∣∣∣( 1√

n

)w (
since ~̀ ∈ XE(k)

)
.(4.96)

Combining (4.95) and (4.96), we get (4.93).

Definition 4.6.8. Let CU(w;~s) and CL(w;~s) be as in Definition 4.6.2. Let E(w;~s)
be as in Definition 4.6.6. Then for all w ≥ 2, define

EL(w;~s) := 3 CL(w;~s) + E(w;~s),

and

EU(w;~s) := 6 CU(w;~s) + E(w;~s)
(

2 CU(w;~s) + 1
)
.

Theorem 4.6.9. Let M(n;T ) be as in Definition 4.6.1 and P̂n,~s(w − 1) be as in
Definition 4.6.5. Let EL

n,~s(w) and EU
n,~s(w) be as in Definition 4.6.8. Let N1(w;~s)

and N2(w;~s) be as in Lemmas 4.6.3 and 4.6.7. Then for all w ≥ 2 and

N > max
{
N1(w;~s), N2(w;~s)

}
:= N(w;~s),

we have

M(n;T )

(
P̂n,~s(w − 1)− EL(w;~s)

( 1√
n

)w)
< p(n;~s) <

M(n;T )

(
P̂n,~s(w − 1) + EU(w;~s)

( 1√
n

)w)
.

(4.97)

Proof. From Lemmas 4.6.3 and 4.6.7, for n > N(w;~s), it follows that

p(n;~s) <M(n;T )

(
P̂n,~s(w−1)+E(w;~s)

( 1√
n

)w)(
1+2 CU(w;~s)

( 1√
n

)w)
, (4.98)
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and

p(n;~s) >M(n;T )

(
P̂n,~s(w− 1)−E(w;~s)

( 1√
n

)w)(
1− CL(w;~s)

( 1√
n

)w)
. (4.99)

Now

∣∣∣P̂n,~s(w − 1)
∣∣∣ =

∣∣∣∣∣
w−1∑
k=0

1

k!

∑
~̀∈XM(k)

F (k;w;~s)
( 1√

n

)w−1∑
u=1

u`u
∣∣∣∣∣

≤

∣∣∣∣∣
w−1∑
k=0

1

k!

∑
~̀∈X(k)

F (k;w;~s)
( 1√

n

)w−1∑
u=1

u`u
∣∣∣∣∣ (as XM(k) ⊆ X(k)

)

=

∣∣∣∣∣
w−1∑
k=0

1

k!

(
w−1∑
u=1

g̃u,~s√
n
u

)k∣∣∣∣∣ ≤
w−1∑
k=0

1

k!

(
w−1∑
u=1

∣∣g̃u,~s∣∣√
n
u

)k

<
w−1∑
k=0

1

k!

(
as n > N2(w;~s)

)
< 3. (4.100)

Applying (4.100) to (4.98), we arrive at the upper bound of (4.97). We get the
lower bound of (4.97) by applying (4.100) to (4.99) and from the fact that CL(w;~s) ·
E(w;~s) > 0 for all w ≥ 2.

4.7 Conclusion

We conclude this chapter by pointing out the following aspects in which Theorem
4.6.9 remains incomplete.

1. Suppose we are given the following two functions defined by shifts of p(n):

SP (n;S) :=
M∑
j=1

T∏
i=1

p(n+ si,j) and SP (n;R) :=
M∑
j=1

T∏
i=1

p(n+ ri,j),

where S = (si,j)1≤i≤T,1≤j≤M and R = (ri,j)1≤i≤T,1≤j≤M . Now in order to de-
cide whether SP (n;S) ≥ SP (n;R) for all n ≥ N(S,R), we need to estimate
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T∏
i=1

p(n + si,j) and
T∏
i=1

p(n + ri,j) individually for each 1 ≤ j ≤ M . In view of

Theorem 4.97, estimation of two factors come into the prominence: computa-

tion of the term
M∑
j=1

(
P̂n,~sj(w−1)−P̂n,~rj(w−1)

)
with ~sj := (s1,j, . . . , sT,j),~rj :=

(r1,j, . . . , rT,j), and approximation of the error term.

2. Depending on the truncation point w, one can compute the main term

M∑
j=1

(
P̂n,~sj(w − 1)− P̂n,~rj(w − 1)

)
.

But computational complexity will arise in estimation of the error term because
in order to approximate Ê(w;~sj) for each j, one needs to have a good control
over XE(k) for 0 ≤ k ≤ w− 1. This seems to be difficult as w tends to infinity,
growth of |XE(k)| is exponential.

3. For example, in order to prove the higher order Turán inequality for p(n), the
minimal choice for w is 10 and consequently, by Theorem 4.6.9 with appropriate
choices for ~s, it follows that

4
(
1− un−1

)(
1− un

)
−
(
1− unun−1

)2
=

π3

12
√

6

1

n9/2
+O

( 1

n5

)
.

This concludes that p(n) satisfies the higher order Turán inequalities for suf-
ficiently large n although due to Chen, Jia, and Wang [37], we know that the
inequality holds for all n ≥ 95. So, from the aspect of the error bound compu-
tation in order to confirm such inequalities from a certain explicit point onward,
our method is inaccessible.

4. Last, but not least, the above discussions naively suggest that for making a
decision whether a given inequality for the partition function (of the above
types) holds or not, we need to have a full asymptotic expansion for the shifted
value of the partition function and explicit computation of the error bound
after truncation the expansion at any positive integer w.
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Chapter 5

Error bounds for the asymptotic
expansion of the partition function

Asymptotic study on the partition function p(n) began with the work of Hardy and
Ramanujan. Later Rademacher obtained a convergent series for p(n) and an error
bound was given by Lehmer. Despite having this, a full asymptotic expansion for
p(n) with an explicit error bound is not known. Recently O’Sullivan studied the
asymptotic expansion of pk(n)-partitions into kth powers, initiated by Wright, and
consequently obtained an asymptotic expansion for p(n) along with a concise de-
scription of the coefficients involved in the expansion but without any estimation
of the error term. Here we consider a detailed and comprehensive analysis on an
estimation of the error term obtained by truncating the asymptotic expansion for
p(n) at any positive integer N . This gives rise to an infinite family of inequalities
for p(n) which finally answers to a question proposed by Chen. Our error term esti-
mation predominantly relies on applications of algorithmic methods from symbolic
summation.

5.1 Asymptotic expansion of the partition func-

tion

A partition of a positive integer n is a non-increasing sequence of positive integers
which sum to n, and the partition function p(n) counts the number of partitions of
n. In their epoch-making breakthrough work in the theory of partitions, Hardy and
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Ramanujan [76] proved that

p(n) ∼ 1

4n
√

3
eπ
√

2n
3 as n→∞. (5.1)

They also proved that p(n) is the integer nearest to

1

2
√

2

ν∑
q=1

√
qAq(n)ψq(n), (5.2)

where Aq(n) is a certain exponential sum, ν = ν(n) is of the order of
√
n, and

ψq(n) =
d

dn

(
exp
{C
q
λn

})
, λn =

√
n− 1

24
, C = π

√
2n

3
.

Extending ν to infinity, Lehmer [96] proved that (5.2) is a divergent series. Rademacher
[122, 124, 123] considered a modification of (5.2) that presents a convergent series
for p(n) which reads:

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
d

dn

(
sinh

(
Cλn/k

)
λn

)
. (5.3)

Lehmer [99, 98] obtained an error bound after subtraction of the Nth partial sum
from the convergent series (5.3).

The study of a full asymptotic expansion for p(n) can be traced in two directions
by considering two different classes that arise from imposing restrictions on parts
of partitions. The two restricted families are ps(n), the number of partitions of n
into perfect sth powers, and p(n, k), the number of partitions of n into at most k
parts. As an application of the “circle method”, Hardy and Ramanujan [76, Section
7, 7.3] obtained the main term in the asymptotic expansion of ps(n). This of course
retrieves (5.1) when we take s = 1. Wright [152, 153] extended the work of Hardy and
Ramanujan and obtained a full asymptotic expansion for ps(n). Recently O’Sullivan
[112] proposed a simplified proof of Wright’s results on the asymptotic expansion of
ps(n), and consequently obtained an asymptotic formula for p(n).

Theorem 5.1.1. [112, Proposition 4.4] Let n and R be positive integers. As n→∞,

p(n) =
eπ
√

2n/3

4n
√

3

(
1 +

R−1∑
t=1

ωt√
n
t +O

(
n−R/2

))
, (5.4)
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with an implied constant depending only on R, where

ωt =
1

(−4
√

6)t

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k

. (5.5)

The binomial coefficient is defined as
(
x
k

)
:= x(x− 1) . . . (x−k+ 1)/k! if k ∈ Z≥0,(

x
0

)
:= 1, and

(
x
k

)
:= 0 if k ∈ Z<0. Szekeres [142] proposed an asymptotic expansion

for p(n, k) for n and k sufficiently large and considering k = n, one obtains the
expansion for p(n) as p(n, k) = p(n). Canfield [33] proved Szekeres’ result by using
a recursion satisfied by p(n, k) without using theory of complex functions and as a
corollary, obtained the main term of the Hardy-Ramanujan formulas for p(n), see
(5.1). For a probabilistic approach to the asymptotic expansion of p(n), we refer to
[30].

The primary objective of this chapter is to obtain an explicit and computable
error bound for the asymptotic expansion of p(n). A main motivation to consider
such a problem is that from the literature, including the works [152, 142, 33, 30, 112],
we could not retrieve any information on the error bound for asymptotic expansion
of p(n). An advantage of getting a control over the error bound is that one can
prove the log-concavity property of p(n) directly from the asymptotic expansion as
speculated by Chen [35, p. 121]. In the language of Theorem 5.4, Chen’s question
can be formulated as follows:

Question 5.1.2. Do there exists d and n0 such that

eπ
√

2n/3

4n
√

3

(
1 +

3∑
t=1

ωt√
n
t −

d

n2

)
< p(n) <

eπ
√

2n/3

4n
√

3

(
1 +

3∑
t=1

ωt√
n
t +

d

n2

)
(5.6)

holds for all n > n0?

Chen remarked that (5.6) implies that p(n) is log-concave for sufficiently large n.
Now in order to demystify the phrase “sufficiently large”, explicit information about
n0 is required; a question being intricately connected with the computation of the
error bound d. A similar phenomena can be found in O’Sullivan’s work:

Theorem 5.1.3. [112, Theorem 1.3, (1.15)] For each positive integer k there exists
Dk so that for all n ≥ Dk,

pk(n)2 ≥ pk(n+ 1) · pk(n− 1) · (1 + n−2). (5.7)
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For k = 1, Theorem 5.1.3 merely implies that p(n) is log-concave for sufficiently
large n although we know that (p(n))n≥26 is log-concave due to [111, 53]. Moreover,
O’Sullivan [112, (5.17)] proved that for large enough n,

p(n+ 1)p(n− 1)

p(n)2

(
1 +

π√
24n3/2

)
> 1,

settled by Chen, Wang, and Xie [39]. The first three authors and Zeng [22, Theorem
7.6] proved a stronger version of (5.7) using an infinite familiy of inequalities for
log p(n).

We conclude this section by discussing the novelty of this chapter in brevity.

In order to elucidate the term O
(
n−R/2

)
in (5.4), determination of the asymptotic

growth of the coefficients ωt in (5.5) is required; a task which looks deceptively simple.
Our representation of ωt is of the following form:

ωt =
t∑

u=0

γ(u)
u∑
s=0

ψ(s).

In an effort to estimate the inner sum
∑u

s=0 ψ(s), the use of the symbolic summation
tool Sigma [128] was essential. Schneider considered [128, 127, 129] a broader algo-
rithmic framework that subsumes the theory of difference field and ring extensions
together with the method of creative telescoping. This algorithmic tool began to
be aimed at a wider class of multi-sums, most frequently encountered in problems
of enumerative combinatorics. For example, in Andrews, Paule, and Schneider [11]
we can see how Sigma assists to solve the TSPP-problem in an LU-reformulation
by Andrews. Beyond the world of combinatorics, applications of Sigma transcends
to solve a very general class of Feynman integrals which are of relevance for man-
ifold physical processes in quantum field theory, see [1]. This chapter adds a new
facet to the regime of applications of Sigma; in particular, its foray into asymptotic
estimation for partition-like functions seems to begin with this work.

5.2 A roadmap for the reader

In this section we will provide a roadmap on the structure of this chapter; i.e., a
navigation from the starting point to the final goal of this chapter, to facilitate for
the reader to follow.
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Using the Hardy-Ramanujan-Rademacher formula for p(n) and Lehmer’s error
bound, Chen, Jia, and Wang [37, Lemma 2.2] proved that for all n ≥ 1207,

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)10

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)10

)
, (5.8)

where for n ≥ 1, µ(n) := π
6

√
24n− 1; a definition which is kept throughout this chap-

ter. More generally, due to the first three authors and Zeng, we have the following
result.

Theorem 5.2.1. [22, Theorem 4.4] For k ∈ Z≥2, define

ĝ(k) :=
1

24

(
36

π2
· ν(k)2 + 1

)
,

where ν(k) := 2 log 6 + (2 log 2)k + 2k log k + 2k log log k +
5k log log k

log k
. Then for all

k ∈ Z≥2 and n > ĝ(k) such that (n, k) 6= (6, 2), we have

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)k

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)k

)
. (5.9)

The goal of this chapter is to derive an inequality of the form

eπ
√

2n/3

4n
√

3

(
k−1∑
t=0

g(t)
√
n
j +

L(k)
√
n
k

)
< p(n) <

eπ
√

2n/3

4n
√

3

(
k−1∑
t=0

g(t)
√
n
t +

U(k)
√
n
k

)
, (5.10)

stated precisely in Theorem 5.7.5, starting from the inequality (5.9). As a conse-
quence we obtain Corollary 9.1.7 which will give an explicit answer to the problem
stated in Question 5.1.2 and which, as a further consequence reveals that p(n) is
log-concave for all n ≥ 26, see Remark 5.7.7.

The first step is to find explicitly the coefficients g(t) such that

√
12 eµ(n)

24n− 1

(
1− 1

µ(n)

)
=
eπ
√

2n/3

4n
√

3

∞∑
t=0

g(t)
√
n
t .

This is done in Section 5.3 by computing separately g(2t) and g(2t+ 1). In spite of
having a double sum representation for g(t), we will see that the coefficients g(t) are
indeed equal to ωt as in Theorem 5.1.1.
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The next step is to estimate the number g(t) in the following form:

f(t)− l(t) ≤ g(t) ≤ f(t) + u(t). (5.11)

Here f(t) has the property that limt→∞
g(t)
f(t)

= 1, limt→∞
l(t)
f(t)

= 0, and limt→∞
u(t)
f(t)

= 0.

Precise descriptions for f(t), u(t), and l(t) are given in Section 5.5 along with the
inequalities of the form (5.11). In order to prove such inequalities, we will use the
preliminary lemmas from Section 5.4 and the summation package Sigma.

Finally in Section 5.6, applying the bounds for g(t), given in Section 5.5, we find

L̂1(k), Û1(k) such that

L̂1(k)
√
n
k
<

∞∑
t=k

g(t)
√
n
t <

Û1(k)
√
n
k
.

Also we compute explicitly L̂2(k) and Û2(k) such that

eπ
√

2n/3

4n
√

3

L̂2(k)
√
n
k
<

√
12 eµ(n)

24n− 1

1

µ(n)k
<
eπ
√

2n/3

4n
√

3

Û2(k)
√
n
k
.

Combining the error bounds as L(k) = L̂1(k) + L̂2(k) and U(k) = Û1(k) + Û2(k), we
arrive at the desired inequality (5.10) for p(n).

5.3 Estimation of the coefficients g(t)

From Theorem 5.2.1, we have for all k ∈ Z≥2 and n > ĝ(k) such that (n, k) 6= (6, 2),

√
12 eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)k

)
< p(n) <

√
12 eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)k

)
. (5.12)

Rewrite the major term

√
12 eµ(n)

24n− 1

(
1− 1

µ(n)

)
in the following way:

√
12 eµ(n)

24n− 1

(
1− 1

µ(n)

)
=

1

4n
√

3
eπ
√

2n/3 eπ
√

2n/3
(√

1− 1
24n
−1
)︸ ︷︷ ︸

:=A1(n)

(
1− 1

24n

)−1(
1− 1

µ(n)

)
︸ ︷︷ ︸

:=A2(n)

.

(5.13)
Next we compute the Taylor expansion of the residue parts of A1(n) and A2(n),
defined in (5.13).
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Definition 5.3.1. For t ∈ Z≥0, define

e1(t) :=


1, if t = 0

(−1)t

(24)t
(1/2− t)t+1

t

t∑
u=1

(−1)u(−t)u
(t+ u)!(2u− 1)!

(π2

36

)u
, otherwise

, (5.14)

and

E1

( 1√
n

)
:=

∞∑
t=0

e1(t)
( 1√

n

)2t

, n ≥ 1. (5.15)

Definition 5.3.2. For t ∈ Z≥0, define

o1(t) := − π

12
√

6

(
(−1)t(1/2− t)t+1

(24)t

t∑
u=0

(−1)u(−t)u
(t+ u+ 1)!(2u)!

(π2

36

)u)
(5.16)

and

O1

( 1√
n

)
:=

∞∑
t=0

o1(t)
( 1√

n

)2t+1

, n ≥ 1. (5.17)

Lemma 5.3.3. For j, k ∈ Z≥0,

k∑
i=0

(−1)i
(
k

i

)(
i/2

j

)
=

{
1, j = k = 0

(−1)j2k−2j k
j

(
2j−k−1
j−k

)
, otherwise

. (5.18)

Proof. The case j = k = 0 is trivial. By the inversion relation

f(k) =
k∑
i=0

(−1)i
(
k

i

)
g(i)⇔ g(k) =

k∑
i=0

(−1)i
(
k

i

)
f(i),

(5.18) for j 6= 0 is equivalent to

k∑
i=0

(−1)i+j2i−2j i

j

(
k

i

)(
2j − i− 1

j − i

)
=

(
k/2

j

)
;

which can be proved (and derived) by any standard summation method, resp. algo-
rithm.

Lemma 5.3.4. Let A1(n) be defined as in (5.13). Let E1(n) be as in Definition 5.3.1
and O1(n) as in Definition 5.3.2. Then

A1(n) = E1

( 1√
n

)
+O1

( 1√
n

)
. (5.19)
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Proof. From Equation (5.13), we get

A1(n) = eπ
√

2n/3
(√

1− 1
24n
−1
)

=
∞∑
k=0

(π
√

2n/3)k

k!

(√
1− 1

24n
− 1

)k

=
∞∑
k=0

(π
√

2/3)k

k!
(
√
n)k

k∑
i=0

(
k

i

)
(−1)k−i

(√
1− 1

24n

)i

=
∞∑
k=0

(π
√

2/3)k

k!
(
√
n)k

k∑
i=0

(
k

i

)
(−1)k−i

∞∑
j=0

(
i/2

j

)
(−1)j

(24n)j

=
∞∑
k=0

k∑
i=0

∞∑
j=0

(π
√

2/3)k

k!

(−1)k−i+j

(24)j

(
k

i

)(
i/2

j

)
(
√
n)k−2j. (5.20)

Define S :=
{

(k, i, j) ∈ Z3
≥0 : 0 ≤ i ≤ k

}
. In order to express A1(n) in the form∑∞

m=0 am( 1√
n
)m, we split the set S into a disjoint union of subsets; i.e., S :=

⋃
t∈Z≥0

V (t),

where for each t ∈ Z≥0, V (t) :=
{

(k, i, j) ∈ Z3
≥0 : k − 2j = −t

}
.

Notice that for k > j, by Lemma 5.3.3,
∑k

i=0

(
k
i

)(
i/2
j

)
= 0. Furthermore, for each

element r = (k, i, j) ∈ S, we define

S(r) :=
(π
√

2/3)k

k!

(−1)k−i+j

(24)j

(
k

i

)(
i/2

j

)
and f(r) := k − 2j.

Rewrite (5.20) as

A1(n) =
∑
r∈S

S(r)(
√
n)f(r) =

∞∑
t=0

∑
r∈V (t)

S(r)
( 1√

n

)t
=

∞∑
t=0

∑
r∈V (2t)

S(r)
( 1√

n

)2t

+
∞∑
t=0

∑
r∈V (2t+1)

S(r)
( 1√

n

)2t+1

. (5.21)

Now

V (2t) =
{

(k, i, j) ∈ S : k − 2j = −2t
}

=
{

(k, i, j) ∈ S : k ≡ 0 (mod 2) and k − 2j = −2t
}

=
{

(2u, i, j) ∈ S : j = u+ t
}

=
{

(2u, i, u+ t) ∈ Z3
≥0 : 0 ≤ i ≤ 2u

}
.

(5.22)
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From (5.22), it follows that

∞∑
t=0

∑
r∈V (2t)

S(r)
( 1√

n

)2t

=
∞∑
t=0

(−1)t

(24)t

(
∞∑
u=0

(2π2/3)u

(2u)!

(−1)u

(24)u

2u∑
i=0

(−1)i
(

2u

i

)(
i/2

u+ t

))( 1√
n

)2t

=
∞∑
t=0

(−1)t

(24)t

(
∞∑
u=0

(−1)u

(2u)!

(π
6

)2u
2u∑
i=0

(−1)i
(

2u

i

)(
i/2

u+ t

)
︸ ︷︷ ︸

:=E1(u,t)

)( 1√
n

)2t

.

(5.23)

By Lemma 5.3.3,

E1(u, t) =


1, if u = t = 0
0, if u > t

2u(1/2−t)t+1(−t)u
t(t+u)!

, otherwise
.

Consequently, for all t ≥ 1,

t∑
u=0

(−1)u

(2u)!

(π
6

)2u

E1(u, t) =
(1/2− t)t+1

t

t∑
u=1

(−1)u(−t)u
(t+ u)!(2u− 1)!

(π2

36

)u
. (5.24)

It follows that

∞∑
t=0

∑
r∈V (2t)

S(r)
( 1√

n

)2t

= 1 +
∞∑
t=1

(
(−1)t

(24)t
(1/2− t)t+1

t

t∑
u=1

(−1)u(−t)u
(t+ u)!(2u− 1)!

(π2

36

)u)( 1√
n

)2t

= E1

( 1√
n

)
.

(5.25)

Similar to (5.22), we have

V (2t+ 1) =
{

(2u+ 1, i, u+ t+ 1) ∈ Z3
≥0 : 0 ≤ i ≤ 2u+ 1

}
, (5.26)
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and consequently, it follows that

∞∑
t=0

∑
r∈V (2t+1)

S(r)
( 1√

n

)2t+1

=
∞∑
t=0

(−1)t

(24)t

(
∞∑
u=0

(π
√

2/3)2u+1

(2u+ 1)!

(−1)u

(24)u+1

2u+1∑
i=0

(−1)i
(

2u+ 1

i

)(
i/2

u+ t+ 1

)
︸ ︷︷ ︸

:=O1(u,t)

)( 1√
n

)2t+1

.

(5.27)

By Lemma 5.3.3,

O1(u, t) =

{
0, if u > t

− (2u+1)(1/2−t)t+1(−t)u
(t+u+1)!

, otherwise
.

It follows that
∞∑
t=0

∑
r∈V (2t+1)

S(r)
( 1√

n

)2t+1

= − π

12
√

6

∞∑
t=0

(
(−1)t(1/2− t)t+1

(24)t

t∑
u=0

(−1)u(−t)u
(t+ u+ 1)!(2u)!

(π2

36

)u)( 1√
n

)2t+1

= O1

( 1√
n

)
. (5.28)

From (5.21), (5.25), and (5.28), we get (5.19).

Definition 5.3.5. For t ∈ Z≥0, define

E2

( 1√
n

)
:=

∞∑
t=0

e2(t)
( 1√

n

)2t

with e2(t) :=
1

(24)t
. (5.29)

Definition 5.3.6. For t ∈ Z≥0, define

O2

( 1√
n

)
:=

∞∑
t=0

o2(t)
( 1√

n

)2t+1

with o2(t) := − 6

π
√

24

(
−3/2

t

)
(−1)t

(24)t
. (5.30)

Lemma 5.3.7. Let A2(n) be defined as in (5.13). Let E2(n) be as in Definition 5.3.5
and O2(n) as in Definition 5.3.6. Then

A2(n) = E2

( 1√
n

)
+O2

( 1√
n

)
. (5.31)

124



Proof. Recall the definition of A2(n) from (5.13) and expand it in the following way:

A2(n) =
(

1− 1

24n

)−1(
1− 1

µ(n)

)
=
(

1− 1

24n

)−1

− 6

π
√

24

1√
n

(
1− 1

24n

)−3/2

=
∞∑
t=0

1

(24)t

( 1√
n

)2t

− 6

π
√

24

∞∑
t=0

(
−3/2

t

)
(−1)t

(24)t

( 1√
n

)2t+1

= E2

( 1√
n

)
+O2

( 1√
n

)
. (5.32)

This completes the proof of (5.31).

Definition 5.3.8. In view of the Definitions 5.3.1-5.3.6, we define

Se,1

( 1√
n

)
:= E1

( 1√
n

)
E2

( 1√
n

)
, (5.33)

Se,2

( 1√
n

)
:= O1

( 1√
n

)
O2

( 1√
n

)
, (5.34)

So,1

( 1√
n

)
:= E1

( 1√
n

)
O2

( 1√
n

)
, (5.35)

and

So,2

( 1√
n

)
:= E2

( 1√
n

)
O1

( 1√
n

)
. (5.36)

Lemma 5.3.9. For each i ∈ {1, 2}, let Se,i

( 1√
n

)
and So,i

( 1√
n

)
be as in Definition

5.3.8. Then
√

12 eµ(n)

24n− 1

(
1− 1

µ(n)

)
=

1

4n
√

3
eπ
√

2n/3

2∑
i=1

(
Se,i

( 1√
n

)
+ So,i

( 1√
n

))
. (5.37)

Proof. The proof follows immediately by applying Lemmas 5.3.4 and 5.3.7 to (5.13).

Definition 5.3.10. For t ∈ Z≥0, define

S1(t) :=
t∑

s=1

(−1)s(1/2− s)s+1

s

s∑
u=1

(−1)u(−s)u
(s+ u)!(2u− 1)!

(π2

36

)u
, (5.38)

and

ge,1(t) :=
1

(24)t

(
1 + S1(t)

)
. (5.39)
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Lemma 5.3.11. Let Se,1

( 1√
n

)
be as in (5.33). Let ge,1(t) be as in Definition 5.3.10.

Then

Se,1

( 1√
n

)
=
∞∑
t=0

ge,1(t)
( 1√

n

)2t

. (5.40)

Proof. From (5.15), (5.29), and (5.33), we have

Se,1

( 1√
n

)
= E1

( 1√
n

)
E2

( 1√
n

)
=

(
1 +

∞∑
t=1

e1(t)
( 1√

n

)2t
)(

1 +
∞∑
t=1

e2(t)
( 1√

n

)2t
)

= 1 +
∞∑
t=1

(
e1(t) + e2(t)

)( 1√
n

)2t

+
∞∑
t=2

(
t−1∑
s=1

e1(s)e2(t− s)

)( 1√
n

)2t

= 1 +
∞∑
t=1

(
e1(t) + e2(t) +

t−1∑
s=1

e1(s)e2(t− s)

)( 1√
n

)2t

.

(5.41)

Combining (5.14) and (5.29), we obtain

e1(t) + e2(t) +
t−1∑
s=1

e1(s)e2(t− s)

=
(−1)t(1/2− t)t+1

(24)t t

t∑
u=1

(−1)u(−t)u
(t+ u)!(2u− 1)!

(π2

36

)u
+

1

(24)t

+
1

24t

t−1∑
s=1

(
(−1)s(1/2− s)s+1

s

s∑
u=1

(−1)u(−s)u
(s+ u)!(2u− 1)!

(π2

36

)u)
=

1

(24)t

(
1 + S1(t)

)
= ge,1(t), (5.42)

which concludes the proof of (5.40).

Definition 5.3.12. For t ∈ Z≥1, define

S2(t) :=
t−1∑
s=0

(1/2− s)s+1

(
−3/2

t− s− 1

) s∑
u=0

(−1)u(−s)u
(s+ u+ 1)!(2u)!

(π2

36

)u
, (5.43)
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and

ge,2(t) :=
(−1)t−1

(24)t
S2(t). (5.44)

Lemma 5.3.13. Let Se,2

( 1√
n

)
as in (5.34) and ge,2(t) as in Definition 5.3.12. Then

Se,2

( 1√
n

)
=
∞∑
t=1

ge,2(t)
( 1√

n

)2t

. (5.45)

Proof. From (5.17), (5.30) and (5.34), we have

Se,2

( 1√
n

)
= O1

( 1√
n

)
O2

( 1√
n

)
=

(
∞∑
t=0

o1(t)
( 1√

n

)2t+1
)(

∞∑
t=0

o2(t)
( 1√

n

)2t+1
)

=
∞∑
t=1

(
t−1∑
s=0

o1(s)o2(t− s− 1)

)( 1√
n

)2t

=
∞∑
t=1

ge,2(t)
( 1√

n

)2t

(by (5.16) and (5.30)). (5.46)

Definition 5.3.14. For t ∈ Z≥2, define

S3(t) :=
t∑

s=1

(1/2− s)s+1

(−3/2
t−s

)
s

s∑
u=1

(−1)u(−s)u
(s+ u)!(2u− 1)!

(π2

36

)u
, (5.47)

and

go,1(t) :=



− 6

π
√

24

(−1)t

(24)t

((−3/2
t

)
+ S3(t)

)
, if t ≥ 2

− 432 + π2

2304
√

6π
, if t = 1

− 6

π
√

24
, if t = 0

. (5.48)

Lemma 5.3.15. Let So,1

( 1√
n

)
as in (5.35) and go,1(t) be as in Definition 5.3.14.

Then

So,1

( 1√
n

)
=
∞∑
t=0

go,1(t)
( 1√

n

)2t+1

. (5.49)
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Proof. From (5.15), (5.30) and (5.35), it follows that

So,1

( 1√
n

)
= E1

( 1√
n

)
O2

( 1√
n

)
=

1√
n

(
1 +

∞∑
t=1

e1(t)
( 1√

n

)2t
)(
− 6

π
√

24
+
∞∑
t=1

o2(t)
( 1√

n

)2t
)

= − 6

π
√

24

1√
n
− 432 + π2

2304
√

6π

1
√
n

3 +
∞∑
t=2

go,1(t)
( 1√

n

)2t+1

(by (5.14) and (5.30)). (5.50)

Definition 5.3.16. For t ∈ Z≥1, define

S4(t) :=
t∑

s=0

(−1)s(1/2− s)s+1

s∑
u=0

(−1)u(−s)u
(s+ u+ 1)!(2u)!

(π2

36

)u
, (5.51)

and

go,2(t) := − π

12
√

6

1

(24)t
S4(t). (5.52)

Lemma 5.3.17. Let So,2

( 1√
n

)
be as in (5.36) and go,2(t) be as in Definition 5.3.16.

Then

So,2

( 1√
n

)
=
∞∑
t=0

go,2(t)
( 1√

n

)2t+1

. (5.53)

Proof. From (5.17), (5.29) and (5.36), it follows that

So,1

( 1√
n

)
= O1

( 1√
n

)
E2

( 1√
n

)
=

∞∑
t=0

(
t∑

s=0

o1(s)e2(t− s)

)( 1√
n

)2t+1

=
∞∑
t=0

go,2(t)
( 1√

n

)2t+1

(by (5.16) and (5.29)). (5.54)
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Definition 5.3.18. For each i ∈ {1, 2}, let ge,i(t) and go,i(t) be as in Definitions
5.3.10-5.3.16. We define a power series

G(n) :=
∞∑
t=0

g(t)
( 1√

n

)t
=
∞∑
t=0

g(2t)
( 1√

n

)2t

+
∞∑
t=0

g(2t+ 1)
( 1√

n

)2t+1

,

where
g(2t) := ge,1(t) + ge,2(t) and g(2t+ 1) := go,1(t) + go,2(t). (5.55)

Lemma 5.3.19. Let G(n) be as in Definition 5.3.18. Then

√
12 eµ(n)

24n− 1

(
1− 1

µ(n)

)
=

1

4n
√

3
eπ
√

2n/3 ·G(n). (5.56)

Proof. Applying Lemmas 5.3.11-5.3.17 to Lemma 5.3.9, we immediately obtain
(5.56).

Remark 5.3.20. Note that using Sigma and GeneratingFunctions due to Mallinger
[104], we observe that for all t ≥ 0,

g(2t) = ge,1(t) + ge,2(t) = ω2t and g(2t+ 1) = go,1(t) + go,2(t) = ω2t+1, (5.57)

where ωt is as in (5.5). Equivalently,

g(t) = ωt =
1

(−4
√

6)t

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k

. (5.58)

However this was already clear from the uniqueness of the asymptotic expansion for
p(n) and its proof can be considered as an additional verification of our computations.
The reader might wonder at this point why we did not use the single sum expression
found by O’Sullivan to bound the remainder of the asymptotic expansion for p(n).
We tried this indeed, but could not obtain from ωt an effective upper and lower bound.
The summation package Sigma could not rewrite ωt as a definite sum which is crucial
for our estimations. However going to the double sum expression g(t), Sigma was
able to give a definite sum expression for the inner sum as we will see later, and this
enabled us to obtain effective upper and lower bounds in the sense that we described
earlier. Namely, l(t) < g(t) < u(t) and limt→∞

l(t)
g(t)

= limt→∞
u(t)
g(t)

= 1.
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5.4 Preliminary lemmas

This section presents all the preliminary facts needed for the proofs of the lemmas
stated in Section 5.5. The proofs of Lemmas 5.4.1 to 5.4.6, except 5.4.4, are presented
in Subsection 5.8.1.

Lemma 5.4.1. Let x1, x2, . . . , xn ≤ 1 and y1, . . . , y1 be non-negative real numbers.
Then

(1− x1)(1− x2) · · · (1− xn)

(1 + y1)(1 + y2) · · · (1 + yn)
≥ 1−

n∑
j=1

xj −
n∑
j=1

yj.

Lemma 5.4.2. For t ≥ 1 and non-negative integer u ≤ t, we have

1

2t
≥ t(−t)u(−1)u

(1 + 2t)(t+ u)(t)u
≥ 1

2t

(
1−

u2 + 1
2

t

)
.

Lemma 5.4.3. For t ≥ 1 and non-negative integer u ≤ t, we have

2u+ 1

2t
≥ 1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−t)i(−1)i

(t+ i)(t)i
≥ 2u+ 1

2t
− 4u3 + 6u2 + 8u+ 3

12t2
.

Throughout the rest of this chapter,

α :=
π

6
.

Lemma 5.4.4. We have

∞∑
u=0

α2u

(2u)!
= cosh(α),

∞∑
u=0

uα2u

(2u)!
=

1

2
α sinh(α),

∞∑
u=0

u2α2u

(2u)!
=
α2

4
cosh(α) +

α

4
sinh(α),

and
∞∑
u=0

u3α2u

(2u)!
=

3α2

8
cosh(α) +

α(α2 + 1)

8
sinh(α).

Lemma 5.4.5. Let u ∈ Z≥0. Assume that an+1 − an ≥ bn+1 − bn for all n ≥ u, and
limn→∞ an = limn→∞ bn = 0. Then

bn ≥ an for all n ≥ u.
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Lemma 5.4.6. For t ≥ 1 and k ∈ {0, 1, 2, 3} we have

∞∑
u=t+1

ukα2u

(2u)!
≤ Ck

t2
with Ck =

α42k

18
.

Lemma 5.4.7. [22, Equation 7.5, Lemma 7.3] For n, k, s ∈ Z≥1 and n > 2s let

bk,n(s) :=
4
√
s√

s+ k − 1

(
s+ k − 1

s− 1

)
1

nk
,

then

0 <
∞∑
t=k

(
−2s−1

2

t

)
(−1)k

nk
< bk,n(s). (5.59)

Lemma 5.4.8. [22, Equation 7.9, Lemma 7.5] For m,n, s ∈ Z≥1 and n > 2s let

cm,n(s) :=
2

m

sm

nm
,

then

− cm,n(s)√
m

<
∞∑
k=m

(
1/2

k

)
(−1)ksk

nk
< 0. (5.60)

Lemma 5.4.9. [22, Equation 7.7, Lemma 7.4] For n, s ∈ Z≥1, m ∈ N and n > 2s
let

βm,n(s) :=
2

nm

(
s+m− 1

s− 1

)
,

then

0 <
∞∑
k=m

(
−s
k

)
(−1)k

nk
< βm,n(s). (5.61)

5.5 Estimation of
(
Si(t)

)
For the sake of a compact representation the organization of this section is as follows.
We first present the statements of the lemmas needed; then, in a separate subsection
we present the proofs.
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5.5.1 The Lemmas 5.5.1 to 5.5.4

Lemma 5.5.1. Let S1(t) be as in Definition 5.3.10. Then for all t ≥ 1,

− 1

8t2
<

S1(t)

(−1)t
(− 3

2
t

) − (−1)t(− 3
2
t

) (cosh(α)− 1
)

+
1

2t
α sinh(α) <

13

25t2
. (5.62)

Lemma 5.5.2. Let S2(t) be as in Definition 5.3.12. Then for all t ≥ 1,

− 11

10t
<
S2(t)(− 3

2
t

) − (−1)t(− 3
2
t

) cosh(α) +
sinh(α)

α
<

1

t
. (5.63)

Lemma 5.5.3. Let S3(t) be as in Definition 5.3.14. Then for all t ≥ 2,

− 71

100t
<
S3(t)(− 3

2
t

) +
(−1)t(− 3

2
t

) α sinh(α) + 1− cosh(α) <
12

25t
. (5.64)

Lemma 5.5.4. Let S4(t) be as in Definition 5.3.16. Then for t ≥ 1,

− 1

3t2
<

S4(t)

(−1)t
(− 3

2
t

) − (−1)t(− 3
2
t

) sinh(α)

α
+

1

2t
cosh(α) <

13

20t2
. (5.65)

5.5.2 The Proofs of Lemmas 5.5.1 to 5.5.4

Proof of Lemma 5.5.1: We rewrite S1(t) as follows:

S1(t) =
t∑

u=1

(−1)uα2u

(2u− 1)!

t∑
s=u

(−1)s

s

(1

2
− s
)
s+1

(−s)u
(s+ u)!

=
t∑

u=1

(−1)uα2u

(2u− 1)!

t−u∑
s=0

(−1)s+u

s+ u

(1

2
− s− u

)
s+u+1

(−s− u)u
(s+ 2u)!︸ ︷︷ ︸

=:S1(t,u)

.

(5.66)

We use the summation package Sigma (and its mechanization by EvaluateMultiSums)2,
to derive and prove that

S1(t, u) = (−1)t
(
−3

2

t

)
(−1)u

2u
A1(t, u), (5.67)

2For further explanations of this rigorous computer derviation we refer to Appendix 5.8.2 and
Remark 5.8.1.
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where

A1(t, u) =
t(−t)u(−1)u

(1 + 2t)(t+ u)(t)u
−

(
(−1)t+1(− 3

2
t

) +
1

(1 + 2t)
+

2t

1 + 2t

u∑
i=1

(−t)i(−1)i

(t+ i)(t)i

)
.

Now by Lemmas 5.4.2 and 5.4.3,

1

2t
+

(−1)t(− 3
2
t

) − 2u+ 1

2t
−
u2 + 1

2

2t2
≤ A1(t, u) ≤ 1

2t
+

(−1)t(− 3
2
t

) − 2u+ 1

2t
+

4u3 + 6u2 + 8u+ 3

12t2
.

It is convenient to reorder the terms in this inequality with respect to the powers of
u:

(−1)t(− 3
2
t

) − 1

4t2
− u

t
− u2

2t2
≤ A1(t, u) ≤ (−1)t(− 3

2
t

) +
1

4t2
+ u
( 2

3t2
− 1

t

)
+
u2

2t2
+
u3

3t2
. (5.68)

Combining (5.66) and (5.67), if follows that

S1(t) = (−1)t
(
−3

2

t

) t∑
u=1

α2uA1(t, u)

(2u)!
. (5.69)

To derive a lower bound, combine (5.68) with (5.69) to get

S1(t)

(−1)t
(− 3

2
t

)
≥

(
(−1)t(− 3

2
t

) − 1

4t2

)
t∑

u=1

α2u

(2u)!
− 1

t

t∑
u=1

uα2u

(2u)!
− 1

2t2

t∑
u=1

u2α2u

(2u)!

≥

(
(−1)t(− 3

2
t

) − 1

4t2

)(
∞∑
u=0

α2u

(2u)!
− 1−

∞∑
u=t+1

α2u

(2u)!

)
− 1

t

∞∑
u=0

uα2u

(2u)!
− 1

2t2

∞∑
u=0

u2α2u

(2u)!
.

>

(
(−1)t(− 3

2
t

) − 1

4t2

)(
∞∑
u=0

α2u

(2u)!
− 1− α4

18t2

)
− 1

t

∞∑
u=0

uα2u

(2u)!
− 1

2t2

∞∑
u=0

u2α2u

(2u)!(
by Lemma 5.4.6 and

(−1)t(− 3
2
t

) >
1

4t2
for all t ≥ 1

)

=

(
(−1)t(− 3

2
t

) − 1

4t2

)(
cosh(α)− 1− α4

18t2

)
− 1

2t
α sinh(α)−
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1

2t2

(α2

4
cosh(α) +

α

4
sinh(α)

) (
by Lemma 5.4.4

)
>

(
(−1)t(− 3

2
t

) − 1

4t2

)(
cosh(α)− 1

)
− α4

18t2
− 1

2t
α sinh(α)−

1

2t2

(α2

4
cosh(α) +

α

4
sinh(α)

) (
as

(−1)t(− 3
2
t

) − 1

4t2
< 1 for all t ≥ 1

)

=
(−1)t(− 3

2
t

) (cosh(α)− 1)− 1

2t
α sinh(α)−

1

2t2

(
cosh(α)− 1

2
+
α4

9
+
α2

4
cosh(α) +

α

4
sinh(α)

)

>
(−1)t(− 3

2
t

) (cosh(α)− 1)− 1

2t
α sinh(α)− 1

8t2(
as

cosh(α)− 1

2
+
α4

9
+
α2

4
cosh(α) +

α

4
sinh(α) <

1

4

)
.

(5.70)

Similarly, for the upper bound, we have for all t ≥ 1,

S1(t)

(−1)t
(− 3

2
t

)
≤ (−1)t(− 3

2
t

) t∑
u=1

α2u

(2u)!
− 1

t

t∑
u=1

uα2u

(2u)!
+

1

4t2

t∑
u=1

α2u

(2u)!
+

2

3t2

t∑
u=1

uα2u

(2u)!
+

1

2t2

t∑
u=1

u2α2u

(2u)!
+

1

3t2

t∑
u=1

u3α2u

(2u)!

=
(−1)t(− 3

2
t

) ∞∑
u=1

α2u

(2u)!
− 1

t

∞∑
u=0

uα2u

(2u)!
+

1

t

∞∑
u=t+1

uα2u

(2u)!
+

1

4t2

∞∑
u=0

α2u

(2u)!

+
2

3t2

∞∑
u=0

uα2u

(2u)!
+

1

2t2

∞∑
u=0

u2α2u

(2u)!
+

1

3t2

∞∑
u=0

u3α2u

(2u)!

≤ (−1)t(− 3
2
t

) (cosh(α)− 1)− 1

2t
α sinh(α) +

α4

9t3
+

1

4t2
cosh(α) +

1

3t2
α sinh(α) +
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1

2t2

(
α2

4
cosh(α) +

α

4
sinh(α)

)
+

1

3t2

(
3α2

8
cosh(α) +

α(α2 + 1)

8
sinh(α)

)
(

by Lemmas 5.4.4 and 5.4.6
)

=
(−1)t(− 3

2
t

) (cosh(α)− 1)− 1

2t
α sinh(α) +

1

t2

(
α4

9t
+
α2 + 1

4
cosh(α) +

α(α2 + 12)

24
sinh(α)

)

≤ (−1)t(− 3
2
t

) (cosh(α)− 1)− 1

2t
α sinh(α) +

1

t2

(
α4

9
+
α2 + 1

4
cosh(α) +

α(α2 + 12)

24
sinh(α)

)

<
(−1)t(− 3

2
t

) (cosh(α)− 1)− 1

2t
α sinh(α) +

13

25t2(
as

α4

9
+
α2 + 1

4
cosh(α) +

α(α2 + 12)

24
sinh(α) <

13

25

)
.

(5.71)

By (5.70) and (5.71), for all t ≥ 1, it follows that

− 1

8t2
<

S1(t)

(−1)t
(− 3

2
t

) − (−1)t(− 3
2
t

) (cosh(α)− 1) +
1

2t
α sinh(α) <

13

25t2
, (5.72)

which concludes the proof.
Proof of Lemma 5.5.2: Rewrite S2(t) as follows:

S2(t) =
t−1∑
u=0

(−1)uα2u

(2u)!

t−1∑
s=u

(1

2
− s
)
s+1

(
−3

2

t− s− 1

)
(−s)u

(s+ u+ 1)!

=
t−1∑
u=0

(−1)uα2u

(2u)!

t−u−1∑
s=0

(1

2
− s− u

)
s+u+1

(
−3

2

t− s− u− 1

)
(−s− u)u

(s+ 2u+ 1)!︸ ︷︷ ︸
=:S2(t,u)

(5.73)
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Using the summation package Sigma (and its mechanization by EvaluateMultiSums)3

we derive and prove that

S2(t, u) =

(
−3

2

t

)
(−1)u+1

(
A2,1(t, u) + A2,2(t, u)

)
, (5.74)

where

A2,1(t, u) =
2t(t− u)(−t)u(−1)u

(1 + 2t)(1 + 2u)(t+ u)(t)u

and

A2,2(t, u) =
(−1)t+1(− 3

2
t

) +
1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−1)i(−t)i
(t+ i)(t)i

.

From (5.73) and (5.74) it follows that

S2(t) = −
(
−3

2

t

)(
s2,1(t) + s2,2(t)

)
, (5.75)

where

s2,1(t) =
t−1∑
u=0

α2u

(2u)!
A2,1(t, u) and s2,2(t) =

t−1∑
u=0

α2u

(2u)!
A2,2(t, u). (5.76)

By Lemma 5.4.2, we have

1

1 + 2u
−
u2 + u+ 1

2

t(1 + 2u)
≤ t− u
t(1 + 2u)

(
1−

u2 + 1
2

t

)
≤ A2,1(t, u) ≤ t− u

t(1 + 2u)
. (5.77)

Plugging (5.77) into (5.76) we obtain

t−1∑
u=0

α2u

(2u+ 1)!
− 1

t

t−1∑
u=0

u2 + u+ 1
2

(2u+ 1)!
α2u ≤ s2,1(t) ≤

t−1∑
u=0

α2u

(2u+ 1)!
− 1

t

t−1∑
u=0

uα2u

(2u+ 1)!
,

and consequently,

∞∑
u=0

α2u

(2u+ 1)!
−
∞∑
u=t

α2u

(2u+ 1)!
− 1

t

∞∑
u=0

u2 + u+ 1
2

(2u+ 1)!
α2u ≤ s2,1(t) ≤

∞∑
u=0

α2u

(2u+ 1)!
− 1

t

(
∞∑
u=0

uα2u

(2u+ 1)!
−
∞∑
u=t

uα2u

(2u+ 1)!

)
.

(5.78)

3We refer again to Appendix 5.8.2 and Remark 5.8.1 to see the underlying machinery in action.
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By Lemma 5.4.6,

∞∑
u=t

α2u

(2u+ 1)!
=

1

α2

∞∑
u=t+1

α2u

(2u− 1)!
=

2

α2

∞∑
u=t+1

uα2u

(2u)!
≤ 2C1

α2t2
=

2α2

9t2
, (5.79)

and

∞∑
u=t

uα2u

(2u+ 1)!
=

2

α2

∞∑
u=t+1

u(u− 1)α2u

(2u)!
≤ 2

α2

∞∑
u=t+1

u2α2u

(2u)!
≤ 2C2

α2t2
=

4α2

9t2
. (5.80)

Plugging (5.79) and (5.80) into (5.78) gives

∞∑
u=0

α2u

(2u+ 1)!
− 2α2

9t2
− 1

t

∞∑
u=0

u2 + u+ 1
2

(2u+ 1)!
α2u ≤ s2,1(t) ≤

∞∑
u=0

α2u

(2u+ 1)!
− 1

t

∞∑
u=0

uα2u

(2u+ 1)!
+

4α2

9t3
.

(5.81)

Using Lemma 5.4.4, (5.81) further reduces to

sinh(α)

α
− 1

t

(
cosh(α)

4
+

sinh(α)

4α
+
α sinh(α)

4
+

2α2

9

)
≤ s2,1(t) ≤

sinh(α)

α
− 1

t

(
cosh(α)

2
− sinh(α)

2α
− 4α2

9

)
.

(5.82)

A numerical check shows that

cosh(α)

4
+

sinh(α)

4α
+
α sinh(α)

4
+

2α2

9
<

7

10
and

cosh(α)

2
− sinh(α)

2α
− 4α2

9
> − 3

40
.

This, along with (5.82), gives

sinh(α)

α
− 7

10t
< s2,1(t) <

sinh(α)

α
+

3

40t
. (5.83)

Next we employ Lemma 5.4.3 and get

2u+ 1

2t
− 4u3 + 6u2 + 8u+ 3

12t2
+

(−1)t+1(− 3
2
t

) ≤ A2,2(t, u) ≤ 2u+ 1

2t
+

(−1)t+1(− 3
2
t

) . (5.84)
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Plugging (5.84) into (5.76), we obtain

t−1∑
u=0

α2u

(2u)!

(
2u+ 1

2t
+

(−1)t+1(− 3
2
t

) − 4u3 + 6u2 + 8u+ 3

12t2

)
≤ s2,2(t) ≤

t−1∑
u=0

α2u

(2u)!

(
2u+ 1

2t
+

(−1)t+1(− 3
2
t

) ),
which, using p3(u) := 4u3 + 6u2 + 8u+ 3, can be rewritten as

1

2t

∞∑
u=0

(2u+ 1)α2u

(2u)!
− 1

2t

∞∑
u=t

(2u+ 1)α2u

(2u)!
+

(−1)t+1(− 3
2
t

) ∞∑
u=0

α2u

(2u)!
− 1

12t2

∞∑
u=0

p3(u)α2u

(2u)!

≤ s2,2(t) ≤ 1

2t

∞∑
u=0

(2u+ 1)α2u

(2u)!
+

(−1)t+1(− 3
2
t

) ∞∑
u=0

α2u

(2u)!
− (−1)t+1(− 3

2
t

) ∞∑
u=t

α2u

(2u)!
.

(5.85)

By Lemma 5.4.6 we obtain

∞∑
u=t

α2u

(2u)!
=

1

α2

∞∑
u=t+1

(2u− 1)2uα2u

(2u)!
≤ 4

α2

∞∑
u=t+1

u2α2u

(2u)!
≤ 4C2

α2t2
=

8α2

9t2
(5.86)

and

∞∑
u=t

(2u+ 1)α2u

(2u)!
=

1

α2

∞∑
u=t+1

2u(2u− 1)2α2u

(2u)!
≤ 8

α2

∞∑
u=t+1

u3α2u

(2u)!
≤ 8C3

α2t2
=

32α2

9t2
.

(5.87)
Combining (5.86) and (5.87) with (5.85) gives

1

2t

∞∑
u=0

(2u+ 1)α2u

(2u)!
− 1

2t

32α2

9t2
+

(−1)t+1(− 3
2
t

) ∞∑
u=0

α2u

(2u)!
− 1

12t2

∞∑
u=0

p3(u)α2u

(2u)!

≤ s2,2(t) ≤ 1

2t

∞∑
u=0

(2u+ 1)α2u

(2u)!
+

(−1)t+1(− 3
2
t

) ∞∑
u=0

α2u

(2u)!
+

(−1)t(− 3
2
t

) 8α2

9t2
.

(5.88)

Furthermore, for all t ≥ 1 we have
(

2t
t

)
≥ 4t

2
√
t

which implies

(−1)t(− 3
2
t

) =
22t+1

t+ 1

1(
2t+2
t+1

) < 1, t ≥ 1. (5.89)
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Applying (5.89) and Lemma 5.4.4 to (5.88), we obtain

(−1)t+1(− 3
2
t

) cosh(α) +
1

2t

(
cosh(α) + α sinh(α)︸ ︷︷ ︸

=:csh(α)

)
− C2,2(α)

t2
≤ s2,2(t) ≤

(−1)t+1(− 3
2
t

) cosh(α) +
1

2t
csh(α) +

8α2

9t2
,

(5.90)

where

C2,2(α) =
16α2

9
+
α2 cosh(α)

4
+
α3 sinh(α)

24
+

cosh(α)

4
+
α sinh(α)

2
< 1 and

8α2

9
<

1

4
.

Therefore

(−1)t+1(− 3
2
t

) cosh(α) +
1

2t
csh(α)− 1

t2
≤ s2,2(t) ≤

(−1)t+1(− 3
2
t

) cosh(α) +
1

2t
csh(α) +

1

4t2
.

(5.91)

Applying (5.83) and (5.91) to (5.75) we obtain

sinh(α)

α
− 7

10t
+

(−1)t+1(− 3
2
t

) cosh(α) +
1

2t
csh(α)− 1

t2
≤ −S2(t)(−3

2
t

) ≤
sinh(α)

α
+

3

40t
+

(−1)t+1(− 3
2
t

) cosh(α) +
1

2t
csh(α) +

1

4t2
,

which implies that for t ≥ 1,

sinh(α)

α
+

(−1)t+1(− 3
2
t

) cosh(α) +
1

t

(
− 7

10
+

csh(α)

2
− 1

)
≤ −S2(t)(−3

2
t

) ≤
sinh(α)

α
+

(−1)t+1(− 3
2
t

) cosh(α) +
1

t

(
3

40
+

csh(α)

2
+

1

4

)
.

(5.92)

Since

− 7

10
+

csh(α)

2
− 1 > −1 and

3

40
+

csh(α)

2
+

1

4
<

11

10
,

from (5.92), it follows that for all t ≥ 1,

− 1

t
< −sinh(α)

α
− (−1)t+1(− 3

2
t

) cosh(α)− S2(t)(− 3
2
t

) < 11

10t
. (5.93)
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Multiplying by −1 on both sides of (5.93), we get (5.63).
Proof of Lemma 5.5.3: Rewrite S3(t) as follows:

S3(t) =
t∑

u=1

(−1)uα2u

(2u− 1)!

t∑
s=u

1

s

(1

2
− s
)
s+1

(
−3

2

t− s

)
(−s)u

(s+ u)!

=
t∑

u=1

(−1)uα2u

(2u− 1)!

t−u∑
s=0

1

s+ u

(1

2
− s− u

)
s+u+1

(
−3

2

t− s− u

)
(−s− u)u
(s+ 2u)!︸ ︷︷ ︸

=:S3(t,u)

(5.94)

Using the summation package Sigma (and its mechanization by EvaluateMultiSums),
the sum S3(t, u) can be rewritten4 as an indefinite sum

S3(t, u) =

(
−3

2

t

)
(−1)u

(
A3,1(t, u) + A3,2(t, u)

)
, (5.95)

where

A3,1(t, u) =
t(1 + 2t− 2u)(−t)u(−1)u

2(1 + 2t)u(t+ u)(t)u

and

A3,2(t, u) =
(−1)t+1(− 3

2
t

) +
1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−t)i(−1)i

(t+ i)(t)i
.

From (5.94) and (5.95), it follows that

S3(t) =

(
−3

2

t

)(
s3,1(t) + s3,2(t)

)
, (5.96)

where

s3,1(t) =
t∑

u=1

α2u

(2u− 1)!
A3,1(t, u) and s3,2(t) =

t∑
u=1

α2u

(2u− 1)!
A3,2(t, u). (5.97)

By Lemma 5.4.2, we have

− 1 + 2t− 2u

2u

1

2t

u2 + 1
2

t
≤ A3,1(t, u)− 1 + 2t− 2u

2u

1

2t
= A3,1(t, u)− 1

2u
+

2u− 1

4ut
≤ 0.

(5.98)

4We refer again to Appendix 5.8.2 and Remark 5.8.1 to see the underlying machinery in action.
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Equation (5.98) implies that

−
3u2 + 2u+ 1

2

4ut
= −

u2 + 1
2

2ut
−

u2

2
+ 1

4

2ut
− 2u− 1

4ut
≤ A3,1(t, u)− 1

2u
≤ −2u− 1

4ut
≤ 0.

(5.99)
Plugging (5.99) into (5.97), we obtain

− 1

2t

∞∑
u=1

(3u2 + 2u+ 1
2
)α2u

(2u)!
≤ − 1

2t

t∑
u=1

(3u2 + 2u+ 1
2
)α2u

(2u)!
≤ s3,1(t)−

t∑
u=1

α2u

(2u)!
≤ 0,

and consequently,

− 1

2t

∞∑
u=1

(3u2 + 2u+ 1
2
)α2u

(2u)!
−

∞∑
u=t+1

α2u

(2u)!
≤ s3,1(t)−

∞∑
u=1

α2u

(2u)!
≤ −

∞∑
u=t+1

α2u

(2u)!
≤ 0.

(5.100)
Applying Lemmas 5.4.6 and 5.4.4 to (5.100) gives

− 1

2t
< −1

t

(
3α2 cosh(α) + 7α sinh(α) + 2 cosh(α)− 2

8
+
α4

9

)
≤ s3,1(t)+1−cosh(α) ≤ 0.

(5.101)
Next, by Lemma 5.4.3, we obtain

− 4u3 + 6u2 + 8u+ 3

12t2
≤ A3,2(t, u) +

(−1)t(− 3
2
t

) − 2u+ 1

2t
≤ 0. (5.102)

Applying (5.102) to (5.97), it follows that

s3,2(t) +
(−1)t(− 3

2
t

) t∑
u=1

α2u

(2u− 1)!
− 1

2t

t∑
u=1

(2u+ 1)α2u

(2u− 1)!
≤ 0 (5.103)

and

s3,2(t) +
(−1)t(− 3

2
t

) t∑
u=1

α2u

(2u− 1)!
− 1

2t

t∑
u=1

(2u+ 1)α2u

(2u− 1)!
≥ − 1

12t2

t∑
u=1

p3(u)α2u

(2u− 1)!

≥ − 1

12t2

∞∑
u=1

p3(u)α2u

(2u− 1)!
,

(5.104)

where p3(u) = 4u3 +6u2 +8u+3 is as in (5.85). Equations (5.103) and (5.104) imply
that

s3,2(t) +
(−1)t(− 3

2
t

) ∞∑
u=1

α2u

(2u− 1)!
− 1

2t

∞∑
u=1

(2u+ 1)α2u

(2u− 1)!
≤ (−1)t(− 3

2
t

) ∞∑
u=t+1

α2u

(2u− 1)!
, (5.105)
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and

s3,2(t) +
(−1)t(− 3

2
t

) ∞∑
u=1

α2u

(2u− 1)!
− 1

2t

∞∑
u=1

(2u+ 1)α2u

(2u− 1)!
≥

− 1

12t2

∞∑
u=1

p3(u)α2u

(2u− 1)!
− 1

2t

∞∑
u=t+1

(2u+ 1)α2u

(2u− 1)!
.

(5.106)

By Lemma 5.4.6 we obtain

∞∑
u=t+1

α2u

(2u− 1)!
= 2

∞∑
u=t+1

uα2u

(2u)!
≤ 4α4

3 · 3!t2
=

2α4

9t2
(5.107)

and
∞∑

u=t+1

(2u+ 1)α2u

(2u− 1)!
= 2u

∞∑
u=t+1

(2u+ 1)α2u

(2u)!
≤ 20α4

3 · 3!t2
=

10α4

9t2
. (5.108)

Substituting (5.107)-(5.108) into (5.105) and (5.106), it follows that

s3,2(t) +
(−1)t(− 3

2
t

) ∞∑
u=1

α2u

(2u− 1)!
− 1

2t

∞∑
u=1

(2u+ 1)α2u

(2u− 1)!
≤ 3

2
· 2α4

9t2
=
α4

3t2
(5.109)

and

− 1

12t2

∞∑
u=1

p3(u)α2u

(2u− 1)!
− 5α4

9t2
≤ − 1

12t2

∞∑
u=1

p3(u)α2u

(2u− 1)!
− 1

2t

10α4

9t2
≤

s3,2(t) +
(−1)t(− 3

2
t

) ∞∑
u=1

α2u

(2u− 1)!
− 1

2t

∞∑
u=1

(2u+ 1)α2u

(2u− 1)!
.

(5.110)

Using Lemma 5.4.4 into (5.109) and (5.110), we obtain

− 61

100t2
< − 1

t2

(
3α3 sinh(α)

8
+

(α4 + 24α2) cosh(α)

24
+

3α sinh(α)

4
+

5α4

9

)
≤

s3,2(t) +
(−1)t(− 3

2
t

) α sinh(α)− 1

2t
sch(α) ≤ α4

3t2
<

3

100t2
,

(5.111)
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where sch(α) := α2 cosh(α) + 2α sinh(α). Combining (5.101) and (5.111), and then
plugging into (5.96) it follows that

− 1

2t
− 61

100t2
<
S3(t)(− 3

2
t

) +
(−1)t(− 3

2
t

) α sinh(α)− 1

2t
sch(α) + 1− cosh(α) <

3

100t2
.

Since for t ≥ 2,

− 1

2t
− 61

100t2
+

1

2t
sch(α) > − 71

100t
,

and
3

100t2
+

1

2t
sch(α) <

12

25t
,

we finally get

12

25t
>
S3(t)(− 3

2
t

) +
(−1)t(− 3

2
t

) α sinh(α) + 1− cosh(α) > − 71

100t
. (5.112)

Proof of Lemma 5.5.4: Rewrite S4(t) as follows:

S4(t) =
t∑

u=0

(−1)uα2u

(2u)!

t∑
s=u

(−1)s
(1

2
− s
)
s+1

(−s)u
(s+ u+ 1)!

=
t∑

u=0

(−1)uα2u

(2u)!

t−u∑
s=0

(−1)s+u
(1

2
− s− u

)
s+u+1

(−s− u)u
(s+ 2u+ 1)!︸ ︷︷ ︸

=:S4(t,u)

(5.113)

Using again the summation package Sigma (and its mechanization by EvaluateMultiSums)5,
we rewrite S4(t, u) as an indefinite sum

S4(t, u) =

(
−3

2

t

)
(−1)u+t

(
A4,1(t, u) + A4,2(t, u)

)
, (5.114)

where

A4,1(t, u) =
t(−t)u(−1)u

2(1 + 2t)(t+ u)(t+ u+ 1)(t)u

5We refer again to Appendix 5.8.2 and Remark 5.8.1 to see the underlying machinery in action.
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and

A4,2(t, u) =
1

1 + 2u

(
(−1)t(− 3

2
t

) − 1

1 + 2t
− 2t

1 + 2t

u∑
i=1

(−1)i(−t)i
(t+ i)(t)i

)
.

From (5.113) and (5.114) it follows that

S4(t) = (−1)t
(
−3

2

t

)(
s4,1(t) + s4,2(t)

)
, (5.115)

where

s4,1(t) =
t∑

u=0

α2u

(2u)!
A4,1(t, u) and s4,2(t) :=

t∑
u=0

α2u

(2u)!
A4,2(t). (5.116)

From Lemmas 5.4.1 and 5.4.2 we have

1

4t2

(
1−

u2 + u+ 3
2

t

)
≤ 1

2(t+ u+ 1)

1

2t

(
1−

u2 + 1
2

t

)
≤ A4,1(t, u) ≤

1

2(t+ u+ 1)

1

2t
≤ 1

4t2
.

(5.117)

Combining (5.117) with (5.116), we obtain

1

4t2

t∑
u=0

α2u

(2u)!
− 1

4t3

t∑
u=0

(u2 + u+ 3
2
)α2u

(2u)!
≤ s4,1(t) ≤ 1

4t2

t∑
u=0

α2u

(2u)!
,

and consequently, we get

1

4t2

∞∑
u=0

α2u

(2u)!
− 1

4t2

∞∑
u=t+1

α2u

(2u)!
− 1

4t3

∞∑
u=0

(u2 + u+ 3
2
)α2u

(2u)!
≤ s4,1(t) ≤ 1

4t2

∞∑
u=0

α2u

(2u)!
.

(5.118)
Equation (5.118) together with Lemmas 5.4.6-5.4.4 imply

1

4t2
cosh(α)− 3

5t3
≤ 1

4t2
cosh(α)− 1

t3

(
α4

72
+

(α2 + 6) cosh(α)

16
+

3α sinh(α)

16

)
≤ s4,1(t) ≤ 1

4t2
cosh(α).

(5.119)
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Next, by Lemma 5.4.3, we obtain

0 ≤ A4,2(t, u)− 1

1 + 2u

(
(−1)t(− 3

2
t

) − 2u+ 1

2t

)
≤ 1

1 + 2u

p3(u)

12t2
, (5.120)

where p3(u) is as in (5.85). Plugging (5.120) into (5.116), it follows that

0 ≤ s4,2(t)−
∞∑
u=0

α2u

(2u+ 1)!

(
(−1)t(− 3

2
t

) − 2u+ 1

2t

)
+

∞∑
u=t+1

α2u

(2u+ 1)!

(
(−1)t(− 3

2
t

) − 2u+ 1

2t

)
1

12t2

∞∑
u=0

p3(u)α2u

(2u+ 1)!
,

which implies that

−(−1)t(− 3
2
t

) ∞∑
u=t+1

α2u

(2u+ 1)!
≤s4,2(t)−

∞∑
u=0

α2u

(2u+ 1)!

(
(−1)t(− 3

2
t

) − 2u+ 1

2t

)
≤

1

12t2

∞∑
u=0

p3(u)α2u

(2u+ 1)!
+

1

2t

∞∑
u=t+1

(2u+ 1)α2u

(2u+ 1)!
.

(5.121)

By Lemma 5.4.6,

∞∑
u=t+1

α2u

(2u+ 1)!
≤

∞∑
u=t+1

α2u

(2u)!
≤ α4

3 · 3!t2
=

α4

18t2
, (5.122)

and

∞∑
u=t+1

(2u+ 1)α2u

(2u+ 1)!
≤

∞∑
u=t+1

(2u+ 1)α2u

(2u)!
≤ C0 + 2C1

t2
=
α4(1 + 4)

3 · 3!t2
=

5α4

18t2
. (5.123)

Applying (5.122) and (5.123) to (5.121) and using Lemma 5.4.4, we finally obtain

− 3

1000t2
< −2

3
· α

4

18t2
≤ −(−1)t(− 3

2
t

) α4

18t2
≤ s4,2(t)− (−1)t(− 3

2
t

) sinh(α)

α
+

1

2t
cosh(α) ≤

1

t2

(
(α2 + 6) cosh(α)

24
+
α sinh(α)

8
+

5α4

36

)
<

7

20t2
.

(5.124)
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From (5.119), (5.124), and (5.115), it follows that

1

t2

(
− 3

1000
+

1

4
cosh(α)− 3

5

)
≤ − 3

1000t2
− 3

5t3
+

1

4t2
cosh(α) ≤

S4(t)

(−1)t
(− 3

2
t

) − (−1)t(− 3
2
t

) sinh(α)

α
+

1

2t
cosh(α) <

1

t2

( 7

20
+

1

4
cosh(α)

)
.

This implies for t ≥ 1,

13

20t2
>

S4(t)

(−1)t
(− 3

2
t

) − (−1)t(− 3
2
t

) sinh(α)

α
+

1

2t
cosh(α) > − 1

3t2
. (5.125)

5.6 Error bounds

Lemma 5.6.1. For all n, k ∈ Z≥1,

1

(24n)k
<
∞∑
t=k

1

(24n)t
≤ 24

23

1

(24n)k
. (5.126)

Proof. The statement follows from

∞∑
t=k

1

(24n)t
=

1

(24n)k
24n

24n− 1
and 1 <

24n

24n− 1
≤ 24

23
for all n ≥ 1.

Lemma 5.6.2. For all n, k, s ∈ Z≥1,

1

(k + 1)s−
1
2

1

(24n)k
<

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

1

(24n)t
<

12

5(k + 1)s−
1
2

1

(24n)k
. (5.127)

Proof. Rewrite the infinite sum as

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

1

(24n)t
=
∞∑
t=k

(
2t+2
t+1

)
4t

t+ 1

2ts
1

(24n)t
. (5.128)
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For all t ≥ 1,
4t

2
√
t
≤
(

2t

t

)
≤ 4t√

πt
.

From (5.128) we get

∞∑
t=k

√
t+ 1

ts
1

(24n)t
≤

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

1

(24n)t
≤ 4√

π

∞∑
t=k

√
t+ 1

2ts
1

(24n)t
. (5.129)

For all k ≥ 1,

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

1

(24n)t
≥

∞∑
t=k

√
t+ 1

ts
1

(24n)t
>

∞∑
t=k

1

(t+ 1)s−
1
2

1

(24n)t
>

1

(k + 1)s−
1
2

1

(24n)k

(5.130)
and

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

1

(24n)t
≤ 4√

π

∞∑
t=k

√
t+ 1

2ts
1

(24n)t

<
4√
π

∞∑
t=k

1

(t+ 1)s−
1
2

1

(24n)t

≤ 4
√
π(k + 1)s−

1
2

∞∑
t=k

1

(24n)t

<
4 · 24

23 ·
√
π

1

(k + 1)s−
1
2

1

(24n)k
(by (5.126)).

<
12

5

1

(k + 1)s−
1
2

1

(24n)k
. (5.131)

Equations (5.130) and (5.131) imply (5.127).

Lemma 5.6.3. For n ∈ Z≥1and k ∈ Z≥0,

0 <
∞∑
t=k

(
−3

2

t

)
(−1)t

(24n)t
< 4
√

2

√
k + 1

(24n)k
. (5.132)

Proof. Setting (n, s) 7→ (24n, 2) in (5.59), it follows that for all n ≥ 1,

0 <
∞∑
t=k

(
−3

2

t

)
(−1)t

(24n)t
< 4
√

2

√
k + 1

(24n)k
.
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Definition 5.6.4. For all k ≥ 1 define

L1(k) :=

(
cosh(α)− 6α sinh(α)

5
√
k + 1

− 3

10(k + 1)3/2

)( 1√
24

)2k

and

U1(k) :=

(
24 cosh(α)

23
− α sinh(α)

2
√
k + 1

+
5

4(k + 1)3/2

)( 1√
24

)2k

.

Lemma 5.6.5. Let L1(k) and U1(k) be as in Definition 5.6.4. Let ge,1(t) be as in
Definition 5.3.10. Then for all n, k ∈ Z≥1,

L1(k)
( 1√

n

)2k

<

∞∑
t=k

ge,1(t)
( 1√

n

)2t

< U1(k)
( 1√

n

)2k

. (5.133)

Proof. From (5.39) and (5.62), it follows that for t ≥ 1,

cosh(α)−
(−1)t

(− 3
2
t

)
2t

α sinh(α)− 1

8

(−1)t
(− 3

2
t

)
t2

< (24)tge,1(t) = 1 + S1(t)

< cosh(α)−
(−1)t

(− 3
2
t

)
2t

α sinh(α) +
13

25

(−1)t
(− 3

2
t

)
t2

.

(5.134)

Now, applying (5.126) and (5.127) with s = 1 and 2, respectively, to (5.134), it
follows that for all k ≥ 1,

∞∑
t=k

ge,1(t)
( 1√

n

)2t

>

(
cosh(α)− 6α sinh(α)

5
√
k + 1

− 3

10(k + 1)3/2

)( 1√
24n

)2k

and

∞∑
t=k

ge,1(t)
( 1√

n

)2t

<

(
24 cosh(α)

23
− α sinh(α)

2
√
k + 1

+
13 · 12

25 · 5
1

(k + 1)3/2

)( 1√
24n

)2k

<

(
24 cosh(α)

23
− α sinh(α)

2
√
k + 1

+
5

4

1

(k + 1)3/2

)( 1√
24n

)2k

.
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Definition 5.6.6. For all k ≥ 1, define

L2(k) :=

(
−24 cosh(α)

23
− 12

5
√
k + 1

)( 1√
24

)2k

and

U2(k) :=

(
− cosh(α) +

4
√

2 sinh(α)

α

√
k + 1 +

66

25
√
k + 1

)( 1√
24

)2k

.

Lemma 5.6.7. Let L2(k) and U2(k) be as in Definition 5.6.6. Let ge,2(t) be as in
Definition 5.3.12. Then for all n, k ∈ Z≥1,

L2(k)
( 1√

n

)2k

<

∞∑
t=k

ge,2(t)
( 1√

n

)2t

< U2(k)
( 1√

n

)2k

. (5.135)

Proof. From (5.44) and (5.63), it follows that for t ≥ 1,

− cosh(α) + (−1)t
(
−3

2

t

)
sinh(α)

α
−

(−1)t
(− 3

2
t

)
t

< (24)tge,2(t) = (−1)t−1S2(t)

< − cosh(α) + (−1)t
(
−3

2

t

)
sinh(α)

α
+

11

10

(−1)t
(− 3

2
t

)
t

.

(5.136)

Now, applying (5.126), (5.127) with s = 1 and (5.132) to (5.136), it follows that for
all k ≥ 1,

∞∑
t=k

ge,2(t)
( 1√

n

)2t

>

(
−24 cosh(α)

23
− 12

5
√
k + 1

)( 1√
24n

)2k

and

∞∑
t=k

ge,2(t)
( 1√

n

)2t

<

(
− cosh(α) +

4
√

2 sinh(α)

α

√
k + 1 +

66

25

1√
k + 1

)( 1√
24n

)2k

.
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Definition 5.6.8. For all k ≥ 1, define

L3(k) :=

(
19

10
α sinh(α)− 109

10
cosh(α)

√
k + 1− 23

10

1√
k + 1

)( 1√
24

)2k+1

and

U3(k) :=

(
2α sinh(α) +

33

10

1√
k + 1

)( 1√
24

)2k+1

.

Lemma 5.6.9. Let L3(k) and U3(k) be as in Definition 5.6.8. Let go,1(t) be as in
Definition 5.3.14. Then for all n, k ∈ Z≥1,

L3(k)
( 1√

n

)2k+1

<
∞∑
t=k

go,1(t)
( 1√

n

)2t+1

< U3(k)
( 1√

n

)2k+1

. (5.137)

Proof. Define c1(t) := − 6

π
(−1)t

(− 3
2
t

)
. From (5.48) and (5.64), it follows that for

t ≥ 2,

6

π
α sinh(α)− 6

π
cosh(α)(−1)t

(
−3

2

t

)
− 12 · 6

25 · π
(−1)t

(− 3
2
t

)
t

< (
√

24)2t+1go,1(t) = c1(t)

(
1 +

S3(t)(− 3
2
t

))

<
6

π
α sinh(α)− 6

π
cosh(α)(−1)t

(
−3

2

t

)
+

71 · 6
100 · π

(−1)t
(− 3

2
t

)
t

.

(5.138)

A numerical check confirms that (5.138) also holds for t = 1; see (5.48). Now,
applying (5.126), (5.127) with s = 1, and (5.132) to (5.138), it follows that for all
k ≥ 1,

∞∑
t=k

go,1(t)
( 1√

n

)2t+1

>

(
19

10
α sinh(α)− 109

10
cosh(α)

√
k + 1− 23

10

1√
k + 1

)( 1√
24n

)2k+1

and
∞∑
t=k

go,1(t)
( 1√

n

)2t+1

<

(
6 · 24

23 · π
α sinh(α) +

71 · 6 · 12

100 · 5 · π
1√
k + 1

)( 1√
24n

)2k+1

<

(
2α sinh(α) +

33

10

1√
k + 1

)( 1√
24n

)2k+1

.
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Definition 5.6.10. For all k ≥ 1, define

L4(k) :=

(
1

4

cosh(α)√
k + 1

− 11

20
α sinh(α)− 41

50

1

(k + 1)3/2

)( 1√
24

)2k+1

and

U4(k) :=

(
63

100

cosh(α)√
k + 1

− 13

25
α sinh(α) +

21

50

1

(k + 1)3/2

)( 1√
24

)2k+1

.

Lemma 5.6.11. Let L4(k) and U4(k) be as in Definition 5.6.10. Let go,2 be as in
Definition 5.3.16. Then for all n, k ∈ Z≥1,

L4(k)
( 1√

n

)2k+1

<

∞∑
t=k

go,2(t)
( 1√

n

)2t+1

< U4(k)
( 1√

n

)2k+1

. (5.139)

Proof. Define c2(t) := −π
6

(−1)t
(− 3

2
t

)
. From (5.52) and (5.65), it follows that for

t ≥ 1,

π

6 · 2
cosh(α)

(−1)t
(− 3

2
t

)
t

− π

6
α sinh(α)− 13 · π

20 · 6
(−1)t

(− 3
2
t

)
t2

< (
√

24)2t+1go,2(t) = c2(t)
S4(t)

(−1)t
(− 3

2
t

)
<

π

6 · 2
cosh(α)

(−1)t
(− 3

2
t

)
t

− π

6
α sinh(α) +

π

6 · 3
(−1)t

(− 3
2
t

)
t2

.

(5.140)

Now, applying (5.126) and (5.127) with s = 1 and 2, respectively, to (5.138), it
follows that for all k ≥ 1,

∞∑
t=k

go,2(t)
( 1√

n

)2t+1

>

(
1

4

cosh(α)√
k + 1

− 11

20
α sinh(α)− 41

50

1

(k + 1)3/2

)( 1√
24n

)2k+1

and

∞∑
t=k

go,2(t)
( 1√

n

)2t+1

<

(
63

100

cosh(α)√
k + 1

− 13

25
α sinh(α) +

21

50

1

(k + 1)3/2

)( 1√
24n

)2k+1

.
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Definition 5.6.12. For k ≥ 1, define

L̂2(k) :=
1

αk
1
√

24
k

(
1− 1

4
√
n

)
and Û2(k) :=

1

αk
1
√

24
k

(
1 +

k

3n

)
.

Definition 5.6.13. For k ≥ 1, define

n0(k) :=
k + 2

24
.

Lemma 5.6.14. Let L̂2(k), and Û2(k) be as in Definition 5.6.12. Let n0(k) be as in
Definition 5.6.13. Then for all k ∈ Z≥1 and n > n0(k),

eπ
√

2n/3

4n
√

3

L̂2(k)
√
n
k
<

√
12 eµ(n)

24n− 1

1

µ(n)k
<
eπ
√

2n/3

4n
√

3

Û2(k)
√
n
k
. (5.141)

Proof. Define

E(n, k) :=

√
12 eµ(n)

24n− 1

1

µ(n)k
, U(n, k) =

eπ
√

2n/3

4n
√

3

1
√
n
k

and

Q(n, k) :=
E(n, k)

U(n, k)
= Q(n, k) =

e
π
√

2n
3

(√
1− 1

24n
−1

)
αk

1
√

24
k

(
1− 1

24n

)− k+2
2
.

Using (5.60) with (m,n, s) 7→ (1, 24n, 1), we obtain for all n ≥ 1,

− 1

12n
<

√
1− 1

24n
− 1 =

∞∑
m=1

(
1/2

m

)
(−1)m

(24n)m
< 0,

which implies that for n ≥ 1,

(
1− 1

4
√
n

)
< e−

π
12

√
2
3n < e

π
√

2n
3

(√
1− 1

24n
−1

)
< 1. (5.142)

Hence

1

(α ·
√

24)k

(
1− 1

24n

)− k+2
2
(

1− 1

4
√
n

)
< Q(n, k) <

1

(α ·
√

24)k

(
1− 1

24n

)− k+2
2
.

(5.143)
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In order to estimate
(

1− 1

24n

)− k+2
2

, we need to split into two cases depending on k

is even or odd.
For k = 2` with ` ∈ Z≥0:(

1− 1

24n

)− k+2
2

=
(

1− 1

24n

)−(`+1)

= 1 +
∞∑
j=1

(
−(`+ 1)

j

)
(−1)j

(24n)j
.

From (5.61) with (m, s, n) 7→ (1, `+ 1, 24n), for all n > `+1
12

, we get

0 <
∞∑
j=1

(
−(`+ 1)

j

)
(−1)j

(24n)j
< β1,24n(`+ 1) =

`+ 1

12n
,

which is equivalent to

1 <
(

1− 1

24n

)− k+2
2
< 1 +

k + 2

24n
for all n >

k + 2

24
. (5.144)

For k = 2`+ 1 with ` ∈ Z≥0:(
1− 1

24n

)− k+2
2

=
(

1− 1

24n

)− 2`+3
2

= 1 +
∞∑
j=1

(
−2`+3

2

j

)
(−1)j

(24n)j
.

Using (5.59) with (m, s, n) 7→ (1, `+ 2, 24n), for all n > `+2
24

, we get

0 <
∞∑
j=1

(
−2`+3

2

j

)
(−1)j

(24n)j
< b1,24n(`+ 2) =

`+ 2

6n

which is equivalent to

1 <
(

1− 1

24n

)− k+2
2
< 1 +

k + 3

12n
≤ 1 +

k

3n
for all n >

k + 3

48
. (5.145)

From (5.144) and (5.145), for all n > k+2
24

it follows that

1 <
(

1− 1

24n

)− k+2
2
< 1 +

k + 3

12n
≤ 1 +

k

3n
. (5.146)

Combining (5.143) and (5.146) concludes the proof.
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5.7 An infinite family of inequalities for p(n)

Definition 5.7.1. For w ∈ Z≥1, define

(
γ0(w), γ1(w)

)
:=

{
(23, 24), if w is even

(15, 17), if w is odd
.

Definition 5.7.2. Let γ0(w) and γ1(w)
)

be as in Definition 5.7.1. Then for all
w ∈ Z≥1, define

L(w) := −γ0(w)

√
dw/2e+ 1
√

24
w and U(w) := γ1(w)

√
dw/2e+ 1
√

24
w .

Lemma 5.7.3. Let ĝ(k) be as in Theorem 5.2.1 and n0(k) as in Definition 5.6.13.
Let g(t) be as in (5.58). Let L(w) and U(w) be as in Definition 5.7.2. If m ∈ Z≥1

and n > max
{

1, n0(2m), ĝ(2m)
}

, then

eπ
√

2n/3

4n
√

3

(
2m−1∑
t=0

g(t)
( 1√

n

)t
+
L(2m)
√
n

2m

)
< p(n) <

eπ
√

2n/3

4n
√

3

(
2m−1∑
t=0

g(t)
( 1√

n

)t
+
U(2m)
√
n

2m

)
.

Proof. Recalling Definition 5.3.18, from Lemma 5.3.19, we have

∞∑
t=0

g(t)
( 1√

n

)t
=

2m−1∑
t=0

g(t)
( 1√

n

)t
+

∞∑
t=2m

g(t)
( 1√

n

)t
=

2m−1∑
t=0

g(t)
( 1√

n

)t
+
∞∑
t=m

g(2t)
( 1√

n

)2t

+
∞∑
t=m

g(2t+ 1)
( 1√

n

)2t+1

=
2m−1∑
t=0

g(t)
( 1√

n

)t
+
∞∑
t=m

(ge,1(t) + ge,2(t))
( 1√

n

)2t

+

∞∑
t=m

(go,1(t) + go,2(t))
( 1√

n

)2t+1

. (5.147)

Using Lemmas 5.6.5-5.6.11 by assigning k 7→ m, it follows that

L1(m) + L2(m)
√
n

2m +
L3(m) + L4(m)
√
n

2m+1 <
∞∑

t=2m

g(t)
( 1√

n

)t
<

U1(m) + U2(m)
√
n

2m +
U3(m) + U4(m)
√
n

2m+1 .

(5.148)
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Moreover, by Lemma 5.6.14 with k = 2m, it follows that
√

12 eµ(n)

24n− 1

1

µ(n)2m
<
eπ
√

2n/3

4n
√

3

Û2(2m)
√
n

2m . (5.149)

Finally, from (5.148) and (5.149) along with the fact that U3(m) + U4(m) > 0, we
obtain
√

12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)2m

)
<
eπ
√

2n/3

4n
√

3

(
2m−1∑
t=0

g(t)
( 1√

n

)t
+

∑4
i=1 Ui(m) + Û2(2m)

√
n

2m

)
.

(5.150)

Since for all m ≥ 1, L3(m) + L4(m) < 0, it follows that
√

12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)2m

)
>
eπ
√

2n/3

4n
√

3

(
2m−1∑
t=0

g(t)
( 1√

n

)t
+

∑4
i=1 Li(m)− Û2(2m)

√
n

2m

)
.

(5.151)

From Lemmas 5.6.5-5.6.11 and 5.6.14, for all n ≥ max{1, n0(2m)},
4∑
i=1

Ui(m) + Û2(2m) <

(
4 +

4√
m+ 1

+
2

(m+ 1)3/2
+ 6
√
m+ 1 +

2m

3α2n

)
1

√
24

2m .

For all 1 ≤ m ≤ 10 observe that n0(2m) < 1 and therefore,
2m

3α2n
<

20

3α2
< 25;

whereas for m ≥ 11, n0(2m) > 1. Consequently,
2m

3α2n
<

8m

α2(m+ 1)
<

8

α2
< 10; i.e.,

2m

3α2n
< 25.

Continuing our estimation

4∑
i=1

Ui(m) + Û2(2m) <

(
29 +

4√
m+ 1

+
2

(m+ 1)3/2
+ 6
√
m+ 1

)
1

√
24

2m

≤ 24
√
m+ 1

√
24

2m = U(2m). (5.152)

Similarly, for all n ≥ max{1, n0(2m)},
4∑
i=1

Li(m)− Û2(2m) >

(
−29− 4√

m+ 1
− 1

2(m+ 1)3/2
− 3
√
m+ 1

)
1

√
24

2m

≥ −23
√
m+ 1

√
24

2m = L(2m). (5.153)
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Plugging (5.152) and (5.153) into (5.150) and (5.151), respectively, and applying
Theorem 5.2.1, we get

p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)2m

)
<
eπ
√

2n/3

4n
√

3

(
2m−1∑
t=0

g(t)
( 1√

n

)t
+
U(2m)
√
n

2m

)
(5.154)

and

p(n) >

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)2m

)
>
eπ
√

2n/3

4n
√

3

(
2m−1∑
t=0

g(t)
( 1√

n

)t
+
L(2m)
√
n

2m

)
.

(5.155)

Lemma 5.7.4. Let ĝ(k) be as in Theorem 5.2.1 and n0(k) as in Definition 5.6.13.
Let g(t) be as in Equation (5.58). Let L(w) and U(w) be as in Definition 5.7.2. If
m ∈ Z≥0 and n > max

{
1, n0(2m+ 1), ĝ(2m+ 1)

}
, then

eπ
√

2n/3

4n
√

3

(
2m∑
t=0

g(t)
( 1√

n

)t
+
L(2m+ 1)
√
n

2m+1

)
< p(n) <

eπ
√
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4n
√

3

(
2m∑
t=0

g(t)
( 1√

n

)t
+
U(2m+ 1)
√
n

2m+1

)
.

Proof. Recalling Definition 5.3.18, by Lemma 5.3.19 we have

∞∑
t=0

g(t)
( 1√

n

)t
=

2m∑
t=0

g(t)
( 1√

n

)t
+

∞∑
t=2m+1

g(t)
( 1√

n

)t
=

2m∑
t=0

g(t)
( 1√

n

)t
+
∞∑
t=m

g(2t+ 1)
( 1√

n

)2t+1

+
∞∑

t=m+1

g(2t)
( 1√

n

)2t

=
2m∑
t=0

g(t)
( 1√

n

)t
+
∞∑
t=m

(go,1(t) + go,2(t))
( 1√

n

)2t+1

+

∞∑
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(ge,1(t) + ge,2(t))
( 1√

n

)2t

. (5.156)

Using Lemmas 5.6.5-5.6.7 by substituting k 7→ m + 1 and Lemmas 5.6.9-5.6.11 by
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substituting k 7→ m, it follows that

L1(m+ 1) + L2(m+ 1)
√
n

2m+2 +
L3(m) + L4(m)
√
n

2m+1 <
∞∑

t=2m+1

g(t)
( 1√

n

)t
<

U1(m+ 1) + U2(m+ 1)
√
n

2m+2 +
U3(m) + U4(m)
√
n

2m+1 .

(5.157)

By Lemma 5.6.14 with k = 2m+ 1,

√
12 eµ(n)

24n− 1

1

µ(n)2m+1
<
eπ
√

2n/3

4n
√

3

Û2(2m+ 1)
√
n

2m+1 . (5.158)

From (5.157) and (5.158) along with the fact that U1(m) + U2(m) > 0, we obtain

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)2m+1

)
<
eπ
√

2n/3

4n
√

3

(
2m∑
t=0

g(t)
( 1√

n

)t
+
Û(2m+ 1)
√
n

2m+1

)
,

(5.159)

where

Û(2m+ 1) = U1(m+ 1) + U2(m+ 1) + U3(m) + U4(m) + Û2(2m+ 1).

Since for all m ≥ 0, L1(m) + L2(m) < 0, it follows that

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)2m+1

)
>
eπ
√

2n/3

4n
√

3

(
2m∑
t=0

g(t)
( 1√

n

)t
+
L̂(2m+ 1)
√
n

2m+1

)
(5.160)

with

L̂(2m+ 1) = L1(m+ 1) + L2(m+ 1) + L3(m) + L4(m)− Û2(2m+ 1).

Next, we estimate Û2(2m+1). Recall from Lemma 5.6.14 that for all n > n0(2m+1),

Û2(2m+ 1) <
1

α2m+1

(
1 +

2m+ 1

3n

) 1
√

24
2m+1 <

1

α

(
1 +

2m+ 1

3n

) 1
√

24
2m+1 .
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We note that for 0 ≤ m ≤ 10; n ≥ 1 > n0(2m+ 1), and therefore,
1

α

(
1 +

2m+ 1

3n

)
<

8

α
; whereas for m ≥ 11, n >

2m+ 3

24
. This implies that

1

α

(
1+

2m+ 1

3n

)
<

9

α
. Hence,

for all n ≥ max{1, n0(2m+ 1)},

Û2(2m+ 1) <
9

α

1
√

24
2m+1 . (5.161)

From Lemmas 5.6.5-5.6.11 and 5.6.14, for all n ≥ max{1, n0(2m+ 1)}, we get

Û(2m+ 1) <

(
18 +

5√
m+ 1

+
1

(m+ 1)3/2
+ 2
√
m+ 2

)
1

√
24

2m+1

≤ 17
√
m+ 2

√
24

2m+1 = U(2m+ 1). (5.162)

Similarly for all n ≥ max{1, n0(2m+ 1)}, it follows that

L̂(2m+ 1) >

(
−17− 3√

m+ 1
− 1

(m+ 1)3/2
− 13
√
m+ 2

)
1

√
24

2m+1

≥ −15
√
m+ 2

√
24

2m+1 = L(2m+ 1). (5.163)

Plugging (5.162) and (5.163) into (5.159) and (5.160), respectively, and applying
Theorem 5.2.1, we get

p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)2m+1

)
<
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√
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3

(
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√
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)
(5.164)

and

p(n) >

√
12eµ(n)

24n− 1
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)
>
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(
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+
L(2m+ 1)
√
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)
.

(5.165)

Theorem 5.7.5. Let ĝ(k) be as in Theorem 5.2.1 and g(t) as in (5.58). Let L(w)
and U(w) be as in Definition 5.7.2. If w ∈ Z≥1 with dw/2e ≥ 1 and n > ĝ(w), then

eπ
√

2n/3

4n
√

3

(
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t=0

g(t)
( 1√

n

)t
+
L(w)√
n
w

)
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eπ
√
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√
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U(w)√
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)
.

(5.166)
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Proof. Combining Lemmas 5.7.3 and 5.7.4 together with the fact that ĝ(k) >
max

{
n0(k), 1

}
, we arrive at (5.166).

Corollary 5.7.6. For all n ≥ 116, we have

eπ
√

2n/3

4n
√

3

(
3∑
t=0

g(t)
√
n
t −

1

14n2

)
< p(n) <

eπ
√

2n/3

4n
√

3

(
3∑
t=0

g(t)
√
n
t +

1

13n2

)
, (5.167)

where

g(0) = 1, g(1) = −π
2 + 72

24
√

6π
, g(2) =

π2 + 432

6912
, g(3) = −π

4 + 1296π2 + 93312

497664
√

6π
.

Proof. Plugging w = 4 into (5.166), we obtain the inequality (5.167).

Remark 5.7.7. Corollary 5.7.6 provides an answer to the Question 5.1.2, asked by
Chen. As a consequence from (5.167), one can derive that p(n) is log-concave for all
n ≥ 26.

5.8 Appendix

5.8.1 Proofs of the lemmas presented in Section 5.4.

Proof of Lemma 5.4.1: For n = 1 we have to prove

1− x1

1 + y1

≥ 1− x1 − y1,

which is equivalent to

1− x1 ≥ (1 + y1)(1− x1 − y1) ≥ 1− x1 − y2
1 − x1y1 ⇔ 0 ≥ −y2

1 − x1y1.

This is always true because x1, y1 are non-negative real numbers. Now assume by
induction that the statement is true for n = N . Next we prove the statement for
n = N + 1. For n = N , we have P ≥ (1− S) with

P :=
(1− x1)(1− x2) · · · (1− xN)

(1 + y1)(1 + y2) · · · (1 + yN)
and S :=

N∑
j=1

xj +
N∑
j=1

yj.
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This implies that

P
1− xN+1

1 + yN+1

≥ (1− S)
1− xN+1

1 + yN+1

.

Therefore it suffices to prove that

(1− S)
1− xN+1

1 + yN+1

≥ 1− S − yN+1 − xN+1,

which is equivalent to

(1− S)(1− xN+1) ≥ (1− S − yN+1 − xN+1)(1 + yN+1).

Equivalently,

1− xN+1 − S + S · xN+1 ≥ 1− S − xN+1 − y2
N+1 − xN+1yN+1 − S · yN+1,

which amounts to say that

S · xN+1 ≥ −y2
N+1 − xN+1yN+1 − S · yN+1,

and this inequality holds because xN+1, yN+1, S ≥ 0.

Proof of Lemma 5.4.2: Expanding the quotient (−1)i(−t)i
(t)i

as

(−1)i
(−t)i
(t)i

= (−1)i
i∏

j=1

−t+ j − 1

t+ j − 1
=

i∏
j=1

t− j + 1

t+ j − 1
,

we obtain

t(−t)u(−1)u

(1 + 2t)(t+ u)(t)u
=

t

2(t+ 1
2
)(t+ u)

u∏
j=1

t− (j − 1)

t+ j − 1
=

1

2t(1 + 1
2t

)(1 + u
t
)

u∏
j=1

1− j−1
t

1 + j−1
t

.

Since t ≥ 1 and u < t, it is clear that

1

2t(1 + 1
2t

)(1 + u
t
)

u∏
j=1

1− j−1
t

1 + j−1
t

≤ 1

2t
. (5.168)

By Lemma 5.4.1, it follows that

1

2t(1 + 1
2t

)(1 + u
t
)

u∏
j=1

1− j−1
t

1 + j−1
t

≥ 1

2t

(
1−

1
2

+ u+ 2
∑u

j=1(j − 1)

t

)
=

1

2t

(
1−

u2 + 1
2

t

)
.

(5.169)
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Combining (5.168) and (5.169) concludes the proof.
Proof of Lemma 5.4.3: By Lemma 5.4.1,

1

2t
≥ 1

1 + 2t
=

1

2t

1

(1 + 1
2t

)
≥ 1

2t

(
1− 1

2t

)
≥ 1

2t
− 1

4t2
. (5.170)

Now

2t
∑u

i=1
(−t)i(−1)i

(t+i)(t)i

1 + 2t
=

1

1 + 1
2t

u∑
i=1

1

t+ i

i∏
j=1

t− j + 1

t+ j − 1
=

1

t

1

1 + 1
2t

u∑
i=1

1

1 + i
t

i∏
j=1

1− j−1
t

1 + j−1
t

.

As t ≥ 1 and u < t, it directly follows that

1

t

1

1 + 1
2t

u∑
i=1

1

1 + i
t

i∏
j=1

1− j−1
t

1 + j−1
t

≤ u

t
. (5.171)

Applying Lemma 5.4.1, we obtain

1

t

1

1 + 1
2t

u∑
i=1

1

1 + i
t

i∏
j=1

1− j−1
t

1 + j−1
t

≥ 1

t

u∑
i=1

1−
1
2

+ i+ 2
∑i

j=1(j − 1)

t
=
u

t
−u(2u2 + 3u+ 4)

6t2
.

(5.172)
Finally, (5.170), (5.171), and (5.172) imply the desired inequality.

Proof of Lemma 5.4.5: Let n ≥ u be fixed. We have to show that bn ≥ an. First
we note that

ak+1 − an =
k∑
j=n

(aj+1 − aj) ≥
k∑
j=n

(bj+1 − bj) = bk+1 − bn.

Consequently, for all k ≥ n we have

ak+1 − an ≥ bk+1 − bn ⇔ bn − bk+1 ≥ an − ak+1.

This implies that

bn = lim
k→∞

(bn − bk+1) ≥ lim
k→∞

(an − ak+1) = an.

Proof of Lemma 5.4.6: We apply Lemma 5.4.5 with an =
∑∞

u=n+1
ukα2u

(2u)!
and

bn = Ck
n2 :

an+1 − an = −(n+ 1)kα2n+2

(2n+ 2)!
and bn+1 − bn = −Ck(2n+ 1)

n2(n+ 1)2
.
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Therefore bn+1 − bn ≤ an+1 − an is equivalent to

(n+ 1)kα2n+2

(2n+ 2)!
≤ Ck(2n+ 1)

n2(n+ 1)2
⇔ f(n) :=

n2(n+ 1)k+2α2n+2

(2n+ 1)(2n+ 2)!
≤ Ck.

In order to prove f(n) ≤ Ck, it suffices to prove f(m) ≤ Ck, where m is such that
f(m) is maximal. Hence in order to find such a m, we find the first m such that

f(m+ 1) ≤ f(m). This is equivalent to finding f(m+1)
f(m)

≤ 1, also as we will see there

is only one such maximum. Then max
n∈N

f(n) = f(m). Now

f(n+ 1)

f(n)
=

(n+ 1)2(n+ 2)k+2α2n+4

(2n+ 3)(2n+ 4)!

(2n+ 1)(2n+ 2)!

n2(n+ 1)k+2α2n+2
=

α2(n+ 2)k+2(2n+ 1)

(2n+ 4)(2n+ 3)2(n+ 1)kn2
.

Using Mathematica’s implementation of Cylindrical Algebraic Decomposition [44],
we obtain that

α2(n+ 2)k+2(2n+ 1)

(2n+ 4)(2n+ 3)2(n+ 1)kn2
≤ 1, for all α2 ≤ 800

729
.

As α2 = π2

36
< 800

729
, max
n∈N

f(n) = f(1); i.e., f(n) ≤ f(1) = Ck.

5.8.2 The Sigma simplification of S3(t, u) in Lemma 5.5.3

Using the symbolic summation package Sigma [128] and its underlying machinery in
the setting of difference rings [129] the inner sum S3(t, u) can be simplified as follows.
Recall from (5.94) that

S3(t, u) =
t−u∑
s=0

1

s+ u

(1

2
− s− u

)
s+u+1

(
−3

2

t− s− u

)
(−s− u)u
(s+ 2u)!

.

After loading Sigma into the computer algebra system Mathematica

In[7]:= << Sigma.m

Sigma - A summation package by Carsten Schneider ©
RISC-JKU

we input the sum under consideration

In[8]:= mySum3 =

t−u∑
s=0

1

s + u

(1
2
− s− u

)
s+u+1

( −3
2

t− s− u

) (−s− u)u

(s + 2u)!
;

and compute a recurrence of it by executing

In[9]:= rec3 = GenerateRecurrence[mySum3]
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Out[9]= (t− u)uSUM[u] + 2(2 + t)(1 + u)SUM[u + 1] + (2 + u)(2 + t + u)SUM[u + 2] == 0

As a result we get a homogeneous linear recurrence of order 2 for S3(t, u) = SUM[u](=mySum3).
Internally, Zeilberger’s creative telescoping paradigm [120] is applied which not only
provides a recurrence but delivers simultaneously a proof certificate that guarantees
the correctness of the result.

Verification of the recurrence. Denote the summand of S3(t, u) by f(t, u, s); i.e. set

f(t, u, s) =
1

s+ u

(1

2
− s− u

)
s+u+1

(
−3

2

t− s− u

)
(−s− u)u
(s+ 2u)!

.

Then one can verify that the polynomials a0(t, u) = u(t−u), a1(t, u) = 2(2+t)(1+u)
and a2(t, u) = (2+u)(2+t+u) (free of the summation variable s) and the expression

g(t, u, s) = −
γ(t, u, s)s

( − 3
2

−s+t−u

)
(−s− u)u

(
1
2
− s− u

)
1+s+u

(s+ 2u)!(s+ u)(1 + s+ 2u)(2 + s+ 2u)(3 + s+ 2u)(−1 + 2s− 2t+ 2u)

with

γ(t, u, s) =− 6s− 6s2 + 16s3 + 8s4 + 6t− 6st− 46s2t− 20s3t+ 12t2 + 30st2 + 12s2t2

− 12u− 22su+ 66s2u+ 64s3u+ 8s4u− 7tu− 138stu− 126s2tu− 16s3tu

+ 52t2u+ 57st2u+ 8s2t2u− 27u2 + 88su2 + 172s2u2 + 44s3u2 − 108tu2

− 235stu2 − 68s2tu2 + 57t2u2 + 24st2u2 + 32u3 + 192su3 + 92s2u3

− 140tu3 − 98stu3 + 18t2u3 + 75u4 + 86su4 − 48tu4 + 30u5

satisfy the summand recurrence

g(t, u, s+1)−g(t, u, s) = a0(t, u)f(t, u, s)+a1(t, u)f(t, u+1, s)+a2(t, u)f(t, u+2, s)
(5.173)

for all 0 ≤ s ≤ t − u with t ≥ u. The components of the summand recurrence can
be obtained with the function call CreativeTelescoping[mySum3]. Summing the
verified equation (5.173) over s from 0 to t− u yields the output recurrence Out[9],
which at the same time yields a proof for the correctness of Out[9].

We remark that Sigma’s creative telescoping approach works not only for hyperge-
ometric sums (here one could use, for instance, also the Paule-Schorn implementation
[118] of Zeilberger’s algorithm [120]), but can be applied in the general setting of dif-
ference rings which allows to treat summands built by indefinite nested sums and
products. More involved examples in the context of plane partitions can be found,
e.g., in [11].

163



We are now in the position to solve the output reccurrence Out[9] with the func-
tion call

In[10]:= recSol = SolveRecurrence[rec3,SUM[u]]

Out[10]=

{{
0, (−1)u

}
,
{
0,

(2 + t− u)

u(2 + t + u)

(−t)u

(2 + t)u
+ 2(−1)u

u∑
i=1

(−1)i(−t)i

(2 + i + t)(2 + t)i

}
,
{
1, 0
}}

This means that we found two linearly independent solutions (the list entries whose
first entry is a zero) that span the full solution space, i.e., the general solution to
Out[9] is

G(t, u) = c1(t) (−1)u + c2

( (2 + t− u)

u(2 + t+ u)

(−t)u
(2 + t)u

+ 2(−1)u
u∑
i=1

(−1)i(−t)i
(2 + i+ t)(2 + t)i

)
(5.174)

where the c1, c2 are constants being free of u. For further details on the underlying
machinery (inspired by [120]) we refer to [129].

Verification of the general solution. The correctness of the solutions can be verified by
plugging them into the recurrence Out[9] and applying (iteratively) the shift relations

(−1)u+1 = −(−1)u,

(−t)1+u = (−t+ u)(−t)u,
(2 + t)1+u = (2 + t+ u)(2 + t)u,

1+u∑
i=1

(−1)i(−t)i
(2 + i+ t)(2 + t)i

=
u∑
i=1

(−1)i(−t)i
(2 + i+ t)(2 + t)i

+
(−1)u(t− u)(−t)u

(2 + t+ u)(3 + t+ u)(2 + t)u
.

Then simple rational function arithmetic shows that the obtained expression collapses
to zero.

Finally, we compute the first two initial values (by another round of symbolic
summation) and find that

S3(t, 1) = (−1)t − (t+ 2)

2(1 + t)

(
−3

2

t

)
,

S3(t, 2) = −(−1)t +

(
8 + 7t+ t2

)
4(1 + t)(2 + t)

(
−3

2

t

)
.

(5.175)

With this information we can set c1 = −(−1)t + (3t+4)
2(t+1)(t+2)

(− 3
2
t

)
and c2 = 1

2

(− 3
2
t

)
so

that the general solution (5.174) agrees with S3(t, u) for u = 1, 2. Since S3(t, u) and
the specialized general solution are both solutions of the recurrence Out[9] and the
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first two initial values agree, they are identical for all u ≥ 0 with u ≤ t. This last
step of combining the solutions accordingly can be accomplished by inserting the list
of two initial values

In[11]:= initialL =

{
(−1)t −

(t + 2)

2(1 + t)

(−3
2

t

)
,−(−1)t +

(
8 + 7t + t2

)
4(1 + t)(2 + t)

(−3
2

t

)}
;

and then executing the command

In[12]:= FindLinearCombination[recSol3, {1, initialL}, u, 2]

Out[12]= −(−1)t(−1)u +
1

2

(− 3
2

t

)( (2 + t− u)

u(2 + t + u)

(−t)u

(2 + t)u
+ (−1)u

( 1

1 + t
+

2

2 + t
+ 2

u∑
i=1

(−1)i(−t)i

(2 + i + t)(2 + t)i

))
Carrying out all the steps above (including also the calculation of the initial val-

ues) can be rather cumbersome. In order to support the user with the simplification
of such problems, the package

In[13]:= << EvaluateMultiSums.m

EvaluateMultiSum by Carsten Schneider © RISC-JKU

has been developed. More precisely, by applying the command EvaluateMultiSums

to the input sum mySum3(= S3(t, u)), all the above steps are carried out automatically
and one obtains in one stroke the desired result:

In[14]:= sol3 = EvaluateMultiSum[mySum3, {}, {u, t}, {0, 1}, {t,∞}]

Out[14]= −(−1)t(−1)u +
1

2

(− 3
2

t

)( (2 + t− u)

u(2 + t + u)

(−t)u

(2 + t)u
+ (−1)u

( 1

1 + t
+

2

2 + t
+ 2

u∑
i=1

(−1)i(−t)i

(2 + i + t)(2 + t)i

))
Since we prefer to rewrite the found expression in terms of the Pochhammer

symbol (t)u, we execute the final simplification step with the function call

In[15]:= SigmaReduce[sol3,u,Tower→ {(t)u}]

Out[15]= −(−1)t(−1)u +
(− 3

2

t

)( t(1 + 2t− 2u)

2(1 + 2t)u(t + u)

(−t)u

(t)u
+ (−1)u

( 1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−1)i(−t)i

(i + t)(t)i

))

Remark 5.8.1. We should mention that there is no particular reason for explaining
the details of Sigma application only for S3(t, u). The simplification of the sums
S1(t, u), S2(t, u), and S4(t, u), as in (5.66), (5.73), and (5.113), respectively, works
completely analogously.

5.9 Concluding remarks

We conclude this chapter with a list of possible future work based on the method
devised in this chapter and its further applications.
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1. A prudent application of our method might lead to obtaining full asymptotic
expansion and respective error bounds for a broad class of functions; for exam-
ple: q(n)-partitions into distinct parts, ps(n)-partitions into perfect sth powers,
k-colored partitions, k-regular partitions, Andrews’ spt-function, α(n)-nth co-
efficient of Ramanujan’s third order mock theta function f(q), the coefficient
sequence of Klein’s j-function, etc.

2. More generally consider the class of Dedekind η-quotients which fit perfectly
into [41, Thm. 1.1] or [138, Thm. 1.1]. Therefore one can also obtain a full
asymptotic expansion and infinite families of inequalities for the coefficient
sequence arising from the Fourier expansion of the considered Dedekind η-
function.

3. Theorem 5.7.5 can be utilized as a black box in order to prove inequalities
pertaining to the partition function by constructing an unified framework. A
major class of inequalities for p(n) can be separated into the following two
categories among many others:

(a) Turán inequalities and its higher order analogues related to the real root-
edness of Jensen polynomials associated to p(n), studied in [53], [37], and
[69].

(b) Linear homogeneous inequalities for p(n); i.e.,

r∑
i=1

p(n+ xi) ≤
s∑
i=1

p(n+ yi).

For more details we refer to [83, 108].

4. More generally, it would be interesting to design a constructive method to
decide whether for some positive integer N a relation of the form

M1∑
j=1

T1∏
i=1

p(n+ s
(j)
i ) ≤

M2∑
j=1

T2∏
i=1

p(n+ r
(j)
i )

holds for all n ≥ N or not.
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Chapter 6

Invariants of the quartic binary
form and proofs of Chen’s
conjectures for partition function
inequalities

The Turán inequality and the higher order Turán inequalities for p(n) have been one
of the more predominant themes in recent years. Griffin, Ono, Rolen, and Zagier
proved that for every integer d ≥ 1, there exists an integer N(d) such that the Jensen
polynomial of degree d and shift n associated with the partition function, denoted by
Jd,np (x), has only distinct real roots for all n ≥ N(d), conjectured by Chen, Jia, and
Wang. Larson and Wagner have provided an estimate for N(d). This implies that the
discriminant of Jd,np (x) is positive; i.e., Discx(J

d,n
p ) > 0. For d = 2, Discx(J

d,n
p ) > 0

when n ≥ N(d) is equivalent to the fact that (p(n))n≥26 is log-concave. In 2017,
Chen undertook a comprehensive investigation of inequalities for p(n) through the
lens of the invariant theory of binary forms of degree n. Positivity of the invariant of
a quadratic binary form (resp. cubic binary form) associated with p(n) reflects that
the sequence (p(n))n≥26 satisfies the Turán inequalities (resp. (p(n))n≥95 satisfies
the higher order Turán inequalities). Chen further studied the two invariants for a
quartic binary form where its coefficients are shifted values of integer partitions and
conjectured four inequalities for p(n). In this chapter, we confirm the conjectures of
Chen.
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6.1 Inequalities for p(n) and invariants of binary

forms

Throughout this chapter, we consider only sequences of real numbers. A sequence
(an)n≥0 is said to satisfy the Turán inequalities or to be log-concave, if

a2
n − an−1an+1 ≥ 0 for all n ≥ 1, (6.1)

see [135]. We say that a sequence (an)n≥0 is said to satisfy the higher order Turán
inequalities if for all n ≥ 1,

4(a2
n − an−1an+1)(a2

n+1 − anan+2)− (anan+1 − an−1an+2)2 ≥ 0. (6.2)

The Turán inequalities and the higher order Turán inequalities are related to the
Laguerre-Pólya class of real entire functions [56, 140]. A real entire function

ψ(x) =
∞∑
k=0

ak
xk

k!
(6.3)

is said to be in Laguerre-Pólya class, denoted by ψ(x) ∈ LP , if it is of the form

ψ(x) = cxme−αx
2+βx

∞∏
k=1

(
1 +

x

xk

)
e
− x
xk ,

where c, β, xk are real numbers, α ≥ 0, m ∈ Z≥0, and
∞∑
k=1

x−2
k converges. Any

sequence of polynomials with only real zeroes, say (Pn(x))n≥0, converges uniformly
to a function P (x) ∈ LP . For a more detailed study on the theory of the LP class,
we refer to [125]. Jensen [80] proved that a real entire function ψ(x) is in LP class
if and only if for any d ∈ Z≥1, the Jensen polynomial of degree d associated with a
sequence (an)n≥0:

Jda (x) =
d∑

k=0

(
d

k

)
akx

k

has only real zeroes. Pólya and Schur [130] proved that for a real entire function
ψ(x) ∈ LP and for any n ≥ Z≥0, the n-th derivative ψ(n)(x) of ψ(x) also belongs to
the LP class, that is, the Jensen polynomial associated with ψ(n)(x)

Jd,na (x) =
d∑

k=0

(
d

k

)
an+kx

k
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has only real zeroes. Observe that for d = 2 and for all nonnegative integers n,
the real-rootedness of Jd,na (x) implies that the discriminant 4(a2

n+1− anan+2) is non-
negative. Pólya’s work [121] on LP class is closely connected with the Riemann
hypothesis. He showed that the Riemann hypothesis is equivalent to the real root-
edness of Jensen polynomial Jd,na (x) for all nonnegative integers d and n, where the
coefficient sequence {an}n≥0 is defined by

(−1 + 4z2) Λ
(1

2
+ z
)

=
∞∑
n=0

an
n!
z2n,

with Λ(s) = π−s/2Γ(s/2)ζ(s) = Λ(1−s), where ζ denotes the Riemann zeta function
and Γ denotes the Gamma function. In 2019, Griffin, Ono, Rolen, and Zagier [69,
Theorem 1] proved that for all d ≥ 1, Jd,na (x) has only real roots for all sufficiently
large n.

Now we discuss in brief the inequalities of the partition function. A partition of a
positive integer n is a weakly decreasing sequence (λ1, λ2, . . . , λr) of positive integers
such that λ1 + λ2 + · · · + λr = n. Let p(n) denote the number of partitions of n.
Estimates on the partition function systematically began with the work of Hardy
and Ramanujan [76] in 1918 and independently by Uspensky [144] in 1920:

p(n) ∼ 1

4n
√

3
eπ
√

2n/3 as n→∞. (6.4)

Hardy and Ramanujan’s proof involved an important tool called the Circle Method
which has manifold applications in analytic number theory. For a well-documented
exposition of this collaboration, see [101]. During 1937-1943, Rademacher [122, 124,
123] improved the work of Hardy and Ramanujan and found a convergent series for
p(n) and Lehmer’s [99, 98] considerations were on the estimation for the remainder
term of the series for p(n). The Hardy-Ramanujan-Rademacher formula reads

p(n) =

√
12

24n− 1

N∑
k=1

Ak(n)√
k

[(
1− k

µ(n)

)
eµ(n)/k +

(
1 +

k

µ(n)

)
e−µ(n)/k

]
+R2(n,N),

(6.5)
where

µ(n) =
π

6

√
24n− 1, Ak(n) =

∑
h mod k
(h,k)=1

e−2πinh/k+πis(h,k)

with

s(h, k) =
k−1∑
µ=1

(
µ

k
−
⌊µ
k

⌋
− 1

2

)(
hµ

k
−
⌊hµ
k

⌋
− 1

2

)
,
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and

|R2(n,N)| < π2N−2/3

√
3

[(
N

µ(n)

)3

sinh
µ(n)

N
+

1

6
−

(
N

µ(n)

)2]
. (6.6)

Independently Nicolas [111] and DeSalvo and Pak [53, Theorem 1.1] proved that the
partition function (p(n))n≥26 is log-concave, conjectured by Chen [35]. DeSalvo and
Pak [53, Theorem 4.1] also proved that for all n ≥ 2,

p(n− 1)

p(n)

(
1 +

1

n

)
>

p(n)

p(n+ 1)
, (6.7)

conjectured by Chen [35]. Further, they improved the term (1 + 1
n
) in (6.7) and

proved that for all n ≥ 7,

p(n− 1)

p(n)

(
1 +

240

(24n)3/2

)
>

p(n)

p(n+ 1)
, (6.8)

see [53, p. 4.2]. DeSalvo and Pak [53] finally came up with the conjecture that the
coefficient of 1/n3/2 in (6.8) can be improved to π/

√
24; i.e., for all n ≥ 45,

p(n− 1)

p(n)

(
1 +

π√
24n3/2

)
>

p(n)

p(n+ 1)
, (6.9)

which was proved by Chen, Wang and Xie [39, Sec. 2]. Paule, Radu, Zeng, and the
author [22, Theorem 7.6] confirmed that the coefficient of 1/n3/2 is π/

√
24, which is

optimal; i.e., they proved that for all n ≥ 120,

p(n)2 >

(
1 +

π√
24n3/2

− 1

n2

)
p(n− 1)p(n+ 1). (6.10)

Chen [36] conjectured that p(n) satisfies the higher order Turán inequalities for all
n ≥ 95 which was proved by Chen, Jia, and Wang [37, Theorem 1.3] and analogous
to the inequality (4.7), they conjectured that for all n ≥ 2,

4(1− un)(1− un+1) <

(
1 +

π√
24n3/2

)
(1− unun+1)2 with un :=

p(n+ 1)p(n− 1)

p(n)2
,

(6.11)
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settled by Larson and Wagner [95, Theorem 1.2]. In [37], Chen, Jia, and Wang
conjectured1 that for any integer d ≥ 1 there exists an integer N(d) such that the
Jensen polynomial of degree d and shift n associated with p(n) has only real roots
for n > N(d) which was settled by Griffin, Ono, Rolen, and Zagier [69, Theorem
5] and inspired by their work, Larson and Wagner [95, Theorem 1.3] proved that
N(d) ≤ (3d)24d(50d)3d2 . Proofs of the inequalities, stated before, primarily rely on
the Hardy-Ramanujan-Rademacher formula (4.2) and Lehmer’s error bound (4.3)
but with different methodologies.

While studying on higher order Turán inequality for p(n), Chen [36] undertook
a comprehensive study on inequalities pertaining to invariants of a binary form. A
binary form P (x, y) of degree d is a homogeneous polynomial of degree d in two
variables x and y is defined by

Pd(x, y) :=
d∑
i=0

(
n

i

)
aix

iyn−i,

where (ai)1≤i≤n ∈ Cn. But we restrict ai to be real numbers. The binary form
Pd(x, y) is transformed into a new binary form, say Q(x, y) with

Qd(x, y) =
d∑
i=0

(
n

i

)
cix

iyn−i

under the action of M =

(
m11 m12

m21 m22

)
∈ GL2(R) as follows:

(
x
y

)
= M

(
x
y

)
.

The transformed coefficients (ci)0≤i≤d are polynomials in (ai)0≤i≤d and entries of the
matrix M . For k ∈ Z≥0, a polynomial I(a0, a1, . . . , ad) in the coefficients (ai)0≤i≤d is
called an invariant of index of k of the binary form Pd(x, y) if for any M ∈ GL2(R),

I(a0, a1, . . . , ad) = (detM)kI(a0, a1, . . . , an).

For a more detailed study on the theory of invariants, see, for example, Hilbert [78],
Kung and Rota [92], and Sturmfels [137]. We observe that I(a0, a1, a2) = a2

1 − a0a2

is an invariant of the quadratic binary form

P2(x, y) = a2x
2 + 2a1xy + a0y

2

1Independently conjectured by K. Ono
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and the discriminant is 4I(a0, a1, a2). For a sequence (an)n≥0, define

In−1(a0, a1, a2) := I(an−1, an, an+1) = a2
n − an−1an+1.

Therefore, if we choose an = p(n), then In−1(p(0), p(1), p(2)) > 0 for all n ≥ 26 is
the same thing as saying (p(n))n≥26 is log-concave. For degree 3,

I(a0, a1, a2, a3) = 4(a2
1 − a0a2)(a2

2 − a1a3)− (a1a2 − a0a3)2

is an invariant of the cubic binary form P3(x, y) = a3x
3 + 3a2x

2y + 3a1xy
2 + a0y

3

and the discriminant is 27I(a0, a1, a2, a3). Similarly, setting an = p(n), the positivity
of In−1(a0, a1, a2, a3) for all n ≥ 95 is equivalent to state that (p(n))n≥95 satisfies the
higher order Turán inequality. Two invariants of the quartic binary form

P4(x, y) = a4x
4 + 4a3x

3y + 6a2x
2y2 + 4a1xy

3 + a0y
4

are of the following form

A(a0, a1, a2, a3, a4) = a0a4 − 4a1a3 + 3a2
2,

B(a0, a1, a2, a3, a4) = −a0a2a4 + a3
2 + a0a

2
3 + a2

1a4 − 2a1a2a3.

Setting an = p(n), Chen [36] conjectured that

A(an−1, an, an+1, an+2, an+3) > 0 and B(an−1, an, an+1, an+2, an+3) > 0,

along with the associated companion inequalities in the spirit of (6.9) and (6.11).
Here we list all the four conjectures with an = p(n).

Conjecture 6.1.1 (eq. (6.17), [36]).

an−1an+3 + 3a2
n+1 > 4anan+2 for all n ≥ 185. (6.12)

Conjecture 6.1.2 (Conjecture 6.15, [36]). We have

4
(

1 +
π2

16n3

)
anan+2 > an−1an+3 + 3a2

n+1 for all n ≥ 218. (6.13)

Conjecture 6.1.3 (eq. (6.18), [36]).

a3
n+1 + an−1a

2
n+2 + a2

nan+3 > 2anan+1an+2 + an−1an+1an+3 for all n ≥ 221. (6.14)
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Conjecture 6.1.4 (Conjecture 6.16, [36]). We have for all n ≥ 244,(
1 +

π3

72
√

6n9/2

)
(2anan+1an+2 + an−1an+1an+3) > a3

n+1 + an−1a
2
n+2 + a2

nan+3.

(6.15)

We prove all four conjectures along with the confirmation that the rate of decay
π2/16n3 (resp. π3/72

√
6n9/2) in (6.1.2) (resp. in (6.1.4)) is the optimal one, as stated

in Theorem 6.1.5 (resp. Theorem 6.1.7). We also ensure that the rate of decay is
π/
√

24n3/2 in the context of (6.11) can not be improved further by proving Theorem
6.1.9.

A major part of this chapter is devoted to obtaining an infinite family of inequal-
ities for p(n− `) for a non-negative integer `, stated in Theorem 6.4.5, so that under
a unified framework, we can prove inequalities for p(n) stated below. Work done in
Sections 6.3 and 6.4 incarnates the theme of work presented in [21].

Let an := p(n).

Theorem 6.1.5. For all n ≥ 218,

4
(

1 +
π2

16n3

)
anan+2 > an−1an+3 + 3a2

n+1 > 4
(

1 +
π2

16n3
− 6

n7/2

)
anan+2. (6.16)

Corollary 6.1.6. Conjecture 6.1.1 and 6.1.2 is true.

Theorem 6.1.7. For all n ≥ 244,(
1 +

π3

72
√

6n9/2

)
(2anan+1an+2 + an−1an+1an+3) > a3

n+1 + an−1a
2
n+2 + a2

nan+3

>
(

1 +
π3

72
√

6n9/2
− 8

n5

)
(2anan+1an+2 + an−1an+1an+3).

(6.17)

Corollary 6.1.8. Conjecture 6.1.3 and 6.1.4 is true.

Theorem 6.1.9. For all n ≥ 115,(
1 +

π√
24n3/2

)
(anan+1 − an−1an+2)2 > 4(a2

n − an−1an+1)(a2
n+1 − anan+2)

>
(

1 +
π√

24n3/2
− 3

n2

)
(anan+1 − an−1an+2)2.

(6.18)

Remark 6.1.10. We observe that Theorem 6.1.9 immediately implies the following
three statements:
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1. (p(n))n≥95 satisfies the higher order Turán inequalities [37, Theorem 1.3].

2. For all n ≥ 2, (6.11) holds [95, Theorem 1.2].

3. π√
24n3/2 is the optimal rate of decay of the quotient

4(a2
n − an−1an+1)(a2

n+1 − anan+2)/(anan+1 − an−1an+2)2.

The rest of this chapter is organized as follows. In Section 6.2, we shall present
a couple of lemmas from [22, 21] that will be helpful in later sections. Following
the work done by Paule, Radu, Schneider, and the author [21], Section 6.3 prepares
the setup by determining the coefficients in the asymptotic expansion of p(n − `)
along with its estimates. An infinite family of inequalities for p(n − `) is presented
in Section 6.4. Section 6.5 presents proofs of the Theorems 6.1.5, 6.1.7, and 6.1.9.
We conclude this chapter with a brief discussion on the further applications of this
work, given in Section 6.7.

6.2 Preliminaries

This section presents all the preliminary lemmas required for the proofs of the lemmas
presented in subsequent sections.

Lemma 6.2.1. [21, Lemma 3.3] For j, k ∈ Z≥0,

k∑
i=0

(−1)i
(
k

i

)(
i/2

j

)
=

{
1, j = k = 0

(−1)j2k−2j k
j

(
2j−k−1
j−k

)
, otherwise

. (6.19)

Lemma 6.2.2. [21, Lemma 4.1] Let x1, x2, . . . , xn ≤ 1 and y1, . . . , y1 be non-negative
real numbers. Then

(1− x1)(1− x2) · · · (1− xn)

(1 + y1)(1 + y2) · · · (1 + yn)
≥ 1−

n∑
j=1

xj −
n∑
j=1

yj.

Lemma 6.2.3. [21, Lemma 4.2] For t ≥ 1 and non-negative integer u ≤ t, we have

1

2t
≥ t(−t)u(−1)u

(1 + 2t)(t+ u)(t)u
≥ 1

2t

(
1−

u2 + 1
2

t

)
.
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Lemma 6.2.4. [21, Lemma 4.3] For t ≥ 1 and non-negative integer u ≤ t, we have

2u+ 1

2t
≥ 1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−t)i(−1)i

(t+ i)(t)i
≥ 2u+ 1

2t
− 4u3 + 6u2 + 8u+ 3

12t2
.

Throughout the rest of this chapter,

α` :=
π

6

√
1 + 24`.

Lemma 6.2.5. We have

∞∑
u=0

α2u
`

(2u)!
= cosh(α`),

∞∑
u=0

uα2u
`

(2u)!
=

1

2
α` sinh(α`),

∞∑
u=0

u2α2u
`

(2u)!
=
α2
`

4
cosh(α`) +

α`
4

sinh(α`),

and
∞∑
u=0

u3α2u
`

(2u)!
=

3α2
`

8
cosh(α`) +

α`(α
2
` + 1)

8
sinh(α`).

Lemma 6.2.6. [21, Lemma 4.5] Let u ∈ Z≥0. Assume that an+1 − an ≥ bn+1 − bn
for all n ≥ u, and limn→∞ an = limn→∞ bn = 0. Then

bn ≥ an for all n ≥ u.

Lemma 6.2.7. For t ≥ 1 and k ∈ {0, 1, 2, 3} we have

∞∑
u=t+1

ukα2u
`

(2u)!
≤ Ck(`)

t2
,

where

Ck(`) =


Ck =

α4
` · 2k

18
, ` = 0

d
√
`e2
(

1 + d
√
`e
)k+2

α
2(1+d

√
`e)

`

(1 + 2d
√
`e)(2 + 2d

√
`e)!

, ` ≥ 1

.

Proof. Applying Lemma 6.2.6 with an =
∑∞

u=n+1

ukα2u
`

(2u)!
and bn = Ck(`)

n2 , bn+1 − bn ≤

an+1 − an is equivalent to show that f(n) :=
n2(n+1)k+2α2n+2

`

(2n+1)(2n+2)!
≤ Ck(`). To prove

f(n) ≤ Ck(`), it is sufficient to show that f(m) ≤ Ck(`) for a minimal m such that

f(m) is maximal. In order to find such m, it is enough to that f(n+1)
f(n)

≤ 1 for all
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n ≥ max{d
√
`e, 1}, and therefore, max

n∈Z≥0

f(n) = f(d
√
`e) = Ck(`) for all ` ≥ 1 and for

` = 0, max
n∈Z≥0

f(n) = f(1) = Ck(0). Now, f(n+1)
f(n)

=
α2
` (n+2)k+2(2n+1)

(2n+4)(2n+3)2(n+1)kn2 ≤ 1 holds for

all all n ≥ max{d
√
`e, 1}.

Lemma 6.2.8. [22, Equation 7.5, Lemma 7.3] For n, k, s ∈ Z≥1 and n > 2s let

bk,n(s) :=
4
√
s√

s+ k − 1

(
s+ k − 1

s− 1

)
1

nk
,

then

0 <
∞∑
t=k

(
−2s−1

2

t

)
(−1)k

nk
< bk,n(s). (6.20)

Lemma 6.2.9. [22, Equation 7.9, Lemma 7.5] For m,n, s ∈ Z≥1 and n > 2s let

cm,n(s) :=
2

m

sm

nm
,

then

− cm,n(s)√
m

<
∞∑
k=m

(
1/2

k

)
(−1)ksk

nk
< 0. (6.21)

Lemma 6.2.10. [22, Equation 7.7, Lemma 7.4] For n, s ∈ Z≥1, m ∈ N and n > 2s
let

βm,n(s) :=
2

nm

(
s+m− 1

s− 1

)
,

then

0 <
∞∑
k=m

(
−s
k

)
(−1)k

nk
< βm,n(s). (6.22)

6.3 Set up

Using the Hardy-Ramanujan-Rademacher formula for p(n) and Lehmer’s error bound,
we have the following inequality for p(n) due to Chen, Jia, and Wang.

Lemma 6.3.1. [37, Lemma 2.2 ] For all n ≥ 1206,

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)10

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)10

)
, (6.23)

where for n ≥ 1, µ(n) := π
6

√
24n− 1.
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The definition of µ(n) is kept throughout this chapter. Paule, Radu, Zeng, and
the author extended Lemma 6.3.1 as follows.

Theorem 6.3.2. [22, Theorem 4.4] For k ∈ Z≥2, define

ĝ(k) :=
1

24

(
36

π2
· ν(k)2 + 1

)
,

where ν(k) := 2 log 6 + (2 log 2)k + 2k log k + 2k log log k +
5k log log k

log k
. Then for all

k ∈ Z≥2 and n > ĝ(k) such that (n, k) 6= (6, 2), we have

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)k

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)k

)
. (6.24)

By making the shift n− ` in p(n) for any ` ≥ 0, we obtain the following result.

Theorem 6.3.3. Let ` ∈ Z≥0. For k ∈ Z≥2, let ĝ(k) be as in Theorem 6.3.2. Then
for all k ∈ Z≥2 and n > ĝ(k) + ` such that (n, k) 6= (6, 2), we have

√
12eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)
− 1

µ(n− `)k

)
< p(n− `) <

√
12eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)
+

1

µ(n− `)k

)
.

(6.25)

Rewrite the term

√
12 eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)

)
in the following way:

√
12 eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)

)
=

1

4n
√

3
eπ
√

2n/3 eπ
√

2n/3
(√

1− 1+24`
24n

−1
)︸ ︷︷ ︸

:=A1(n,`)

(
1− 1 + 24`

24n

)−1(
1− 1

µ(n− `)

)
︸ ︷︷ ︸

:=A2(n,`)

.
(6.26)

Now we compute the Taylor expansion of the residue parts of A1(n, `) and A2(n, `),
defined in (6.26).
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Definition 6.3.4. For t, ` ∈ Z≥0, define

e1(t, `) :=


1, if t = 0

(−1)t(1 + 24`)t

(24)t
(1/2− t)t+1

t

t∑
u=1

(−1)u(−t)u
(t+ u)!(2u− 1)!

α2u
` , otherwise

,

(6.27)
and

E1

( 1√
n
, `
)

:=
∞∑
t=0

e1(t, `)
( 1√

n

)2t

, n ≥ 1. (6.28)

Definition 6.3.5. For t, ` ∈ Z≥0, define

o1(t, `) := − π

12
√

6
(1 + 24`)

(
(−1)t(1/2− t)t+1(1 + 24`)t

(24)t

t∑
u=0

(−1)u(−t)u
(t+ u+ 1)!(2u)!

α2u
`

)
(6.29)

and

O1

( 1√
n
, `
)

:=
∞∑
t=0

o1(t, `)
( 1√

n

)2t+1

, n ≥ 1. (6.30)

Lemma 6.3.6. Let A1(n, `) be defined as in (6.26). Let E1(n, `) be as in Definition
6.3.4 and O1(n, `) as in Definition 6.3.5. Then

A1(n, `) = E1

( 1√
n
, `
)

+O1

( 1√
n
, `
)
. (6.31)

Proof. From (6.26), we get

A1(n, `) = eπ
√

2n/3
(√

1− 1+24`
24n

−1
)

=
∞∑
k=0

(π
√

2n/3)k

k!

(√
1− 1 + 24`

24n
− 1

)k

=
∞∑
k=0

(π
√

2/3)k

k!
(
√
n)k

k∑
i=0

(
k

i

)
(−1)k−i

(√
1− 1 + 24`

24n

)i

=
∞∑
k=0

(π
√

2/3)k

k!
(
√
n)k

k∑
i=0

(
k

i

)
(−1)k−i

∞∑
j=0

(
i/2

j

)
(−1)j(1 + 24`)j

(24n)j

=
∞∑
k=0

k∑
i=0

∞∑
j=0

(π
√

2/3)k

k!

(−1)k−i+j(1 + 24`)j

(24)j

(
k

i

)(
i/2

j

)
(
√
n)k−2j.

(6.32)
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Split S :=
{

(k, i, j) ∈ Z3
≥0 : 0 ≤ i ≤ k

}
:=

⋃
t∈Z≥0

V (t), where for each t ∈ Z≥0,

V (2t) =
{

(2u, i, u+ t) ∈ Z3
≥0 : 0 ≤ i ≤ 2u

}
and

V (2t+ 1) =
{

(2u+ 1, i, u+ t+ 1) ∈ Z3
≥0 : 0 ≤ i ≤ 2u+ 1

}
.

By Lemma 6.2.1, we have
k∑
i=0

(
k

i

)(
i/2

j

)
= 0 for k > j. For r = (k, i, j) ∈ S, we

define

S(r) :=
(π
√

2/3)k

k!

(−1)k−i+j(1 + 24`)j

(24)j

(
k

i

)(
i/2

j

)
and f(r) := k − 2j.

Rewrite (6.32) as

A1(n, `) =
∞∑
t=0

∑
r∈V (2t)

S(r)
( 1√

n

)2t

+
∞∑
t=0

∑
r∈V (2t+1)

S(r)
( 1√

n

)2t+1

. (6.33)

Now
∞∑
t=0

∑
r∈V (2t)

S(r)
( 1√

n

)2t

=
∞∑
t=0

(−1)t(1 + 24`)t

(24)t

(
∞∑
u=0

(−1)u

(2u)!
α2u
` E1(u, t)

)( 1√
n

)2t

,

(6.34)

where by Lemma 6.2.1,

E1(u, t) :=
2u∑
i=0

(−1)i
(

2u

i

)(
i/2

u+ t

)
=


1, if u = t = 0
0, if u > t

2u(1/2−t)t+1(−t)u
t(t+u)!

, otherwise
.

Consequently, we have
∞∑
t=0

∑
r∈V (2t)

S(r)
( 1√

n

)2t

= E1

( 1√
n
, `
)
. (6.35)

Simplifying,
∞∑
t=0

∑
r∈V (2t+1)

S(r)
( 1√

n

)2t+1

= −π(1 + 24`)

12
√

6

∞∑
t=0

(−1)t(1 + 24`)t

(24)t

(
∞∑
u=0

(−1)u

(2u+ 1)!
α2u
` O1(u, t)

)( 1√
n

)2t+1

,

(6.36)
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where by Lemma 6.2.1,

O1(u, t) :=
2u+1∑
i=0

(−1)i
(

2u+ 1

i

)(
i/2

u+ t+ 1

)
=

{
0, if u > t

− (2u+1)(1/2−t)t+1(−t)u
(t+u+1)!

, otherwise
.

Therefore, we have

∞∑
t=0

∑
r∈V (2t+1)

S(r)
( 1√

n

)2t+1

= O1

( 1√
n
, `
)
. (6.37)

From (6.33), (6.35), and (6.37), we get (6.31).

Definition 6.3.7. For t ∈ Z≥0, define

E2

( 1√
n
, `
)

:=
∞∑
t=0

e2(t, `)
( 1√

n

)2t

with e2(t, `) :=
(1 + 24`)t

(24)t
. (6.38)

Definition 6.3.8. For t ∈ Z≥0, define

O2

( 1√
n

)
:=

∞∑
t=0

o2(t)
( 1√

n

)2t+1

with o2(t) := − 6

π
√

24

(
−3/2

t

)
(−1)t(1 + 24`)t

(24)t
.

(6.39)

Lemma 6.3.9. Let A2(n, `) be defined as in (6.26). Let E2(n, `) be as in Definition
6.3.7 and O2(n, `) as in Definition 6.3.8. Then

A2(n, `) = E2

( 1√
n
, `
)

+O2

( 1√
n
, `
)
. (6.40)

Proof. Following the definition of A2(n, `) from (6.26) and expand it as follows:

A2(n, `) =
(

1− 1 + 24`

24n

)−1

− 6

π
√

24

1√
n

(
1− 1 + 24`

24n

)−3/2

= E2

( 1√
n
, `
)

+O2

( 1√
n
, `
)
. (6.41)

This completes the proof of (6.40).
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Definition 6.3.10. Following the Definitions 6.3.4-6.3.8, we define

Se,1

( 1√
n
, `
)

:= E1

( 1√
n
, `
)
E2

( 1√
n
, `
)
, (6.42)

Se,2

( 1√
n
, `
)

:= O1

( 1√
n
, `
)
O2

( 1√
n
, `
)
, (6.43)

So,1

( 1√
n
, `
)

:= E1

( 1√
n
, `
)
O2

( 1√
n
, `
)
, (6.44)

and

So,2

( 1√
n
, `
)

:= E2

( 1√
n
, `
)
O1

( 1√
n
, `
)
. (6.45)

Lemma 6.3.11. For each i ∈ {1, 2}, let Se,i

( 1√
n
, `
)

and So,i

( 1√
n
, `
)

be as in

Definition 6.3.10. Then

√
12 eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)

)
=

1

4n
√

3
eπ
√

2n/3

2∑
i=1

(
Se,i

( 1√
n
, `
)

+ So,i

( 1√
n
, `
))

.

(6.46)

Proof. The proof follows immediately by applying Lemmas 6.3.6 and 6.3.9 to (6.26).

6.3.1 Coefficients in the asymptotic expansion of p(n− `)
Definition 6.3.12. For t, ` ∈ Z≥0, define

S1(t, `) :=
t∑

s=1

(−1)s(1/2− s)s+1

s

s∑
u=1

(−1)u(−s)u
(s+ u)!(2u− 1)!

α2u
` , (6.47)

and

ge,1(t, `) :=
(1 + 24`)t

(24)t

(
1 + S1(t, `)

)
. (6.48)

Lemma 6.3.13. Let Se,1

( 1√
n
, `
)

be as in (6.42). Let ge,1(t, `) be as in Definition

6.3.12. Then

Se,1

( 1√
n
, `
)

=
∞∑
t=0

ge,1(t, `)
( 1√

n

)2t

. (6.49)
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Proof. From (6.28), (6.38), and (6.42), we have

Se,1

( 1√
n
, `
)

= 1 +
∞∑
t=1

(
e1(t, `) + e2(t, `) +

t−1∑
s=1

e1(s, `)e2(t− s, `)

)( 1√
n

)2t

.

(6.50)

Combining (6.27) and (6.38), we obtain

e1(t) + e2(t) +
t−1∑
s=1

e1(s)e2(t− s) =
(1 + 24`)t

(24)t

(
1 + S1(t, `)

)
= ge,1(t, `),(6.51)

which concludes the proof of (6.49).

Definition 6.3.14. For t ∈ Z≥1 and ` ∈ Z≥0, define

S2(t, `) :=
t−1∑
s=0

(1/2− s)s+1

(
−3/2

t− s− 1

) s∑
u=0

(−1)u(−s)u
(s+ u+ 1)!(2u)!

α2u
` , (6.52)

and

ge,2(t, `) :=
(−1)t−1(1 + 24`)t

(24)t
S2(t, `). (6.53)

Lemma 6.3.15. Let Se,2

( 1√
n
, `
)

as in (6.43) and ge,2(t, `) as in Definition 6.3.14.

Then

Se,2

( 1√
n
, `
)

=
∞∑
t=1

ge,2(t, `)
( 1√

n

)2t

. (6.54)

Proof. From (6.39), (6.40) and (6.43), we have

Se,2

( 1√
n
, `
)

= O1

( 1√
n
, `
)
O2

( 1√
n
, `
)

=
∞∑
t=1

(
t−1∑
s=0

o1(s, `)o2(t− s− 1, `)

)( 1√
n

)2t

=
∞∑
t=1

ge,2(t, `)
( 1√

n

)2t

(by (6.29) and (6.39)). (6.55)
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Definition 6.3.16. For t ∈ Z≥2 and ` ∈ Z≥0, define

S3(t, `) :=
t∑

s=1

(1/2− s)s+1

(−3/2
t−s

)
s

s∑
u=1

(−1)u(−s)u
(s+ u)!(2u− 1)!

α2u
` , (6.56)

and

go,1(t, `) :=



− 6

π
√

24

(−1)t(1 + 24`)t

(24)t

((−3/2
t

)
+ S3(t, `)

)
, if t ≥ 2

−432 + (1 + 24`)π2

2304
√

6π
, if t = 1

− 6

π
√

24
, if t = 0

. (6.57)

Lemma 6.3.17. Let So,1

( 1√
n
, `
)

as in (6.44) and go,1(t, `) be as in Definition 6.3.16.

Then

So,1

( 1√
n
, `
)

=
∞∑
t=0

go,1(t, `)
( 1√

n

)2t+1

. (6.58)

Proof. From (6.28), (6.39) and (6.44), it follows that

So,1

( 1√
n
, `
)

= E1

( 1√
n
, `
)
O2

( 1√
n
, `
)

= go,1(0, `)
1√
n

+ go,1(1, `)
1
√
n

3 +

∞∑
t=2

(
o2(t) +

t∑
s=1

e1(s, `)o2(t− s, `)

)( 1√
n

)2t+1

= go,1(0, `)
1√
n

+ go,1(1, `)
1
√
n

3 +
∞∑
t=2

go,1(t, `)
( 1√

n

)2t+1

(by (6.27) and (6.39)). (6.59)

Definition 6.3.18. For t ∈ Z≥1 and ` ∈ Z≥0, define

S4(t, `) :=
t∑

s=0

(−1)s(1/2− s)s+1

s∑
u=0

(−1)u(−s)u
(s+ u+ 1)!(2u)!

α2u
` , (6.60)

and

go,2(t, `) := −π(1 + 24`)

12
√

6

(1 + 24`)t

(24)t
S4(t, `). (6.61)
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Lemma 6.3.19. Let So,2

( 1√
n
, `
)

be as in (6.45) and go,2(t, `) be as in Definition

6.3.18. Then

So,2

( 1√
n
, `
)

=
∞∑
t=0

go,2(t, `)
( 1√

n

)2t+1

. (6.62)

Proof. From (6.29), (6.38) and (6.45), it follows that

So,1

( 1√
n
, `
)

= O1

( 1√
n
, `
)
E2

( 1√
n
, `
)

=
∞∑
t=0

(
t∑

s=0

o1(s, `)e2(t− s, `)

)( 1√
n

)2t+1

=
∞∑
t=0

go,2(t, `)
( 1√

n

)2t+1

(by (6.30) and (6.38)). (6.63)

Definition 6.3.20. For each i ∈ {1, 2}, let ge,i(t, `) and go,i(t, `) be as in Definitions
6.3.12-6.3.18. We define a power series

G(n, `) :=
∞∑
t=0

g(t, `)
( 1√

n

)t
=
∞∑
t=0

g(2t, `)
( 1√

n

)2t

+
∞∑
t=0

g(2t+ 1, `)
( 1√

n

)2t+1

,

where

g(2t, `) := ge,1(t, `) + ge,2(t, `) and g(2t+ 1, `) := go,1(t, `) + go,2(t, `). (6.64)

Lemma 6.3.21. Let G(n, `) be as in Definition 6.3.20. Then
√

12 eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)

)
=

1

4n
√

3
eπ
√

2n/3 ·G(n, `). (6.65)

Proof. Applying Lemmas 6.3.13-6.3.19 to Lemma 6.3.9, we have (6.65).

Remark 6.3.22. Using Sigma due to Schneider [128] and GeneratingFunctions

due to Mallinger [104], we observe that for all t ≥ 0,

g(2t, `) = ge,1(t, `) + ge,2(t, `) = ω2t,` and g(2t+ 1, `) = go,1(t, `) + go,2(t, `) = ω2t+1,`,
(6.66)

where

g(t, `) = ωt,` =
(1 + 24`)t

(−4
√

6)t

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k 1

(1 + 24`)k
. (6.67)

Note that for ` = 0, we retrieve ωt as in O’Sullivan’s [112, Proposition 4.4] work.
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6.3.2 Estimation of (Si(t, `))

We present the Lemmas 6.3.24-6.3.30 which will be needed in the Subsection 6.3.3.
A brief sketch of proofs of these lemmas are presented in the Section 6.6.

Definition 6.3.23. Let Ck(`) be as in Lemma 6.2.7. Define

CL1 (`) :=
cosh(α`)− 1

4
+ C0(`) +

α2
` cosh(α`) + α` sinh(α`)

8
,

CU1 (`) := C1(`) +
α2
` + 1

4
cosh(α`) +

α`(α
2
` + 12)

24
sinh(α`).

Lemma 6.3.24. Let S1(t, `) be as in Definition 6.3.12 and CL1 (`), CU1 (`) as in Defi-
nition 6.3.23. Then for all t ≥ 1,

− CL1 (`)

t2
<

S1(t, `)

(−1)t
(− 3

2
t

) − (−1)t(− 3
2
t

) (cosh(α`)− 1
)

+
1

2t
α` sinh(α`) <

CU1 (`)

t2
. (6.68)

Definition 6.3.25. Let Ck(`) be as in Lemma 6.2.7. Define

CL2,1(`) :=
cosh(α`)

4
+

sinh(α`)

4α`
+
α` sinh(α`)

4
+

2C1(`)

α2
`

,

CU2,1(`) := −cosh(α`)

2
+

sinh(α`)

2α`
+

2C2(`)

α2
`

,

csh(`) := cosh(α`) + α` sinh(α`),

C2,2(`) :=
8C3(`)

α2
`

+
(α2

` + 1) cosh(α`)

4
+

(α3
` + 12α`) sinh(α`)

24
,

CL2 (`) := CU2,1(`) +
csh(`)

2
+

4C2(`)

α2
`

,

CU2 (`) := CL2,1(`)− csh(`)

2
+ C2,2(`).

Lemma 6.3.26. Let S2(t, `) be as in Definition 6.3.14 and CL2 (`), CU2 (`) as in Defi-
nition 6.3.25. Then for all t ≥ 1,

− CL2 (`)

t
<
S2(t, `)(− 3

2
t

) − (−1)t(− 3
2
t

) cosh(α`) +
sinh(α`)

α`
<
CU2 (`)

t
. (6.69)

Definition 6.3.27. Let Ck(`) be as in Lemma 6.2.7. Define

C3,1(`) :=
3α2

` cosh(α`) + 7α` sinh(α`) + 2 cosh(α`)− 2

8
+ C0(`),
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C3,2(`) :=
9α3

` sinh(α`) + (α4
` + 24α2

`) cosh(α`) + 18α` sinh(α`)

24
+ 2C2(`) + C1(`),

sch(`) := α2
` cosh(α`) + 2α` sinh(α`),

CL3 (`) := C3,1(`) + C3,2(`)− sch(`)

2
,

CU3 (`) := 3C1(`) +
sch(`)

2
.

Lemma 6.3.28. Let S3(t, `) be as in Definition 6.3.16 and CL3 (`), CU3 (`) as in Defi-
nition 6.3.27. Then for all t ≥ 2,

− CL3 (`)

t
<
S3(t, `)(− 3

2
t

) +
(−1)t(− 3

2
t

) α` sinh(α`) + 1− cosh(α`) <
CU3 (`)

t
. (6.70)

Definition 6.3.29. Let Ck(`) be as in Lemma 6.2.7. Define

C4,1(`) :=
α4
`

72
+

(α2
` + 6) cosh(α`) + 3α` sinh(α`)

16
,

CL4 (`) := C4,1(`)− cosh(α`)

4
+

2C0(`)

3
,

CU4 (`) :=
(α2

` + 12) cosh(α`) + 3α` sinh(α`) + 12C0(`)

24
.

Lemma 6.3.30. Let S4(t, `) be as in Definition 6.3.18 and CL4 (`), CU4 (`) as in Defi-
nition 6.3.29. Then for t ≥ 1,

− CL4 (`)

t2
<

S4(t, `)

(−1)t
(− 3

2
t

) − (−1)t(− 3
2
t

) sinh(α`)

α`
+

1

2t
cosh(α`) <

CU4 (`)

t2
. (6.71)

6.3.3 Error bounds

Lemma 6.3.31. For all k ∈ Z≥1, ` ∈ Z≥0, and n ≥ `+ 1,

(1 + 24`)k

(24n)k
<

∞∑
t=k

(1 + 24`)t

(24n)t
≤ 24(`+ 1)

23

(1 + 24`)k

(24n)k
. (6.72)

Proof. Equation (6.72) follows from

∞∑
t=k

(1 + 24`)t

(24n)t
=

(1 + 24`)k

(24n)k
24n

24n− 24`− 1
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and

1 <
24n

24n− 24`− 1
≤ 24(`+ 1)

23
for all n ≥ `+ 1.

Lemma 6.3.32. For all n, k, s ∈ Z≥1, ` ∈ Z≥0, and n ≥ `+ 1,

1

(k + 1)s−
1
2

(1 + 24`)k

(24n)k
<

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

(1 + 24`)t

(24n)t
<

12(`+ 1)

5(k + 1)s−
1
2

(1 + 24`)t

(24n)k
. (6.73)

Proof. We observe that

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

1

(24n)t
=
∞∑
t=k

(
2t+2
t+1

)
4t

t+ 1

2ts
(1 + 24`)t

(24n)t
. (6.74)

For all t ≥ 1,
4t

2
√
t
≤
(

2t

t

)
≤ 4t√

πt
.

From (6.74) we obtain

∞∑
t=k

√
t+ 1

ts
(1 + 24`)t

(24n)t
≤

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

1

(24n)t
≤ 4√

π

∞∑
t=k

√
t+ 1

2ts
(1 + 24`)t

(24n)t
. (6.75)

For all k ≥ 1,

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

(1 + 24`)t

(24n)t
≥

∞∑
t=k

√
t+ 1

ts
(1 + 24`)t

(24n)t
>

1

(k + 1)s−
1
2

(1 + 24`)k

(24n)k
(6.76)

and

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

(1 + 24`)t

(24n)t
<

4√
π

∞∑
t=k

1

(t+ 1)s−
1
2

(1 + 24`)t

(24n)t

≤ 4
√
π(k + 1)s−

1
2

∞∑
t=k

(1 + 24`)t

(24n)t

<
4 · 24(`+ 1)

23 ·
√
π

1

(k + 1)s−
1
2

(1 + 24`)k

(24n)k
(by (6.72)).

<
12

5

(`+ 1)

(k + 1)s−
1
2

1

(24n)k
. (6.77)

Equations (6.76) and (6.77) imply (6.73).
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Lemma 6.3.33. For n ∈ Z≥1, k, ` ∈ Z≥0, and n ≥ 4`+ 1,

0 <
∞∑
t=k

(
−3

2

t

)
(−1)t(1 + 24`)t

(24n)t
< 4
√

2

√
k + 1(1 + 24`)k

(24n)k
. (6.78)

Proof. Setting (n, s) 7→ (
24n

24`+ 1
, 2) in (6.20), it follows that for all n ≥ 4`+ 1,

0 <
∞∑
t=k

(
−3

2

t

)
(−1)t

(24n)t
< 4
√

2

√
k + 1(1 + 24`)k

(24n)k
.

Definition 6.3.34. Let CL1 (`) and CU1 (`) be as in Definition 6.3.23. Then for all
k ≥ 1 and ` ≥ 0, define

L1(k, `) :=

(
cosh(α`)−

6α` sinh(α`)(`+ 1)

5
√
k + 1

− 12(`+ 1)

5(k + 1)3/2
CL1 (`)

)(√
1 + 24`

24n

)2k

and

U1(k, `) :=

(
24(`+ 1) cosh(α`)

23
− α` sinh(α`)

2
√
k + 1

+
12(`+ 1)

5(k + 1)3/2
CU1 (`)

)(√
1 + 24`

24n

)2k

.

Lemma 6.3.35. Let L1(k, `) and U1(k, `) be as in Definition 6.3.34. Let ge,1(t, `) be
as in Definition 6.3.12. Then for all k ∈ Z≥1 and n ≥ 4`+ 1,

L1(k, `)
( 1√

n

)2k

<
∞∑
t=k

ge,1(t, `)
( 1√

n

)2t

< U1(k, `)
( 1√

n

)2k

. (6.79)

Proof. From (6.48) and (6.68), it follows that for t ≥ 1,

cosh(α`)−
(−1)t

(− 3
2
t

)
2t

α` sinh(α`)−
(−1)t

(− 3
2
t

)
t2

CL1 (`) <
( 24

1 + 24`

)t
ge,1(t) = 1 + S1(t, `)

< cosh(α`)−
(−1)t

(− 3
2
t

)
2t

α` sinh(α`) +
(−1)t

(− 3
2
t

)
t2

CU1 (`).

(6.80)

Applying (6.72) and (6.73) with s = 1 and 2, respectively, to (6.80), we obtain
(6.79).
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Definition 6.3.36. Let CL2 (`) and CU2 (`) be as in Definition 6.3.25. For all k ≥ 1
and ` ≥ 0, define

L2(k, `) :=

(
−24(`+ 1) cosh(α`)

23
− 12(`+ 1)

5
√
k + 1

CU2 (`)

)(√
1 + 24`

24

)2k

and

U2(k, `) :=

(
− cosh(α`) +

4
√

2 sinh(α`)

α`

√
k + 1 +

12(`+ 1)

5
√
k + 1

CL2 (`)

)(√
1 + 24`

24

)2k

.

Lemma 6.3.37. Let L2(k, `) and U2(k, `) be as in Definition 6.3.36. Let ge,2(t, `) be
as in Definition 6.3.14. Then for all k ∈ Z≥1 and n ≥ 4`+ 1,

L2(k, `)
( 1√

n

)2k

<
∞∑
t=k

ge,2(t, `)
( 1√

n

)2t

< U2(k, `)
( 1√

n

)2k

. (6.81)

Proof. From (6.53) and (6.69), it follows that for t ≥ 1,

− cosh(α`) + (−1)t
(
−3

2

t

)
sinh(α`)

α`
−

(−1)t
(− 3

2
t

)
t

CU2 (`)

<
(1 + 24`

24

)t
ge,2(t, `) = (−1)t−1S2(t, `)

< − cosh(α`) + (−1)t
(
−3

2

t

)
sinh(α`)

α`
+

(−1)t
(− 3

2
t

)
t

CL2 (`).

(6.82)

Applying (6.72), (6.73) with s = 1 and (6.78) to (6.82), we get (6.81).

Definition 6.3.38. Let CL3 (`) and CU3 (`) be as in Definition 6.3.27. For all k ≥ 1
and ` ≥ 0, define

L3(k, `) :=

(
6α` sinh(α`)

π
√

1 + 24`
− 24

√
2 cosh(α`)

√
k + 1

π
√

1 + 24`
− 72(`+ 1)

5π
√

1 + 24`

CU3 (`)√
k + 1

)(√
1 + 24`

24

)2k+1

and

U3(k, `) :=

(
6 · 24(`+ 1)

23π
√

1 + 24`
α` sinh(α`) +

72(`+ 1)

5π
√

1 + 24`

CL3 (`)√
k + 1

)(√
1 + 24`

24

)2k+1

.
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Lemma 6.3.39. Let L3(k, `) and U3(k, `) be as in Definition 6.3.38. Let go,1(t, `) be
as in Definition 6.3.16. Then for all k ∈ Z≥1 and n ≥ 4`+ 1,

L3(k, `)
( 1√

n

)2k+1

<

∞∑
t=k

go,1(t, `)
( 1√

n

)2t+1

< U3(k, `)
( 1√

n

)2k+1

. (6.83)

Proof. Define c1(t, `) := − 6

π
√

1 + 24`
(−1)t

(− 3
2
t

)
. From (6.57) and (6.70), it follows

that for t ≥ 2,

6α` sinh(α`)

π
√

1 + 24`
− 6 cosh(α`)

π
√

1 + 24`
(−1)t

(
−3

2

t

)
− 6CU3 (`)

π
√

1 + 24`

(−1)t
(− 3

2
t

)
t

<

(√
24

24`+ 1

)2t+1

go,1(t, `) = c1(t, `)

(
1 +

S3(t, `)(− 3
2
t

) )

<
6α` sinh(α`)

π
√

1 + 24`
− 6 cosh(α`)

π
√

1 + 24`
(−1)t

(
−3

2

t

)
+

6CL3 (`)

π
√

1 + 24`

(−1)t
(− 3

2
t

)
t

.

(6.84)

We observe that (6.84) also holds for t ∈ {0, 1}; see (6.57). Now, applying (6.72),
(6.73) with s = 1, and (6.78) to (6.84), we conclude the proof.

Definition 6.3.40. Let CL4 (`) and CU4 (`) be as in Definition 6.3.29. For all k ≥ 1
and ` ≥ 0, define

L4(k, `) :=
π
√

1 + 24`

6

(
cosh(α`)

2
√
k + 1

− 24(`+ 1) sinh(α`)

23α`
− 12(`+ 1)CU4 (`)

5(k + 1)3/2

)(√
1 + 24`

24

)2k+1

and

U4(k, `) :=
π
√

1 + 24`

6

(
6(`+ 1) cosh(α`)

5
√
k + 1

− sinh(α`)

α`
+

12(`+ 1)CL4 (`)

5(k + 1)3/2

)(√
1 + 24`

24

)2k+1

.

Lemma 6.3.41. Let L4(k, `) and U4(k, `) be as in Definition 6.3.40. Let go,2(t, `) be
as in Definition 6.3.18. Then for all k ∈ Z≥1 and n ≥ 4`+ 1,

L4(k, `)
( 1√

n

)2k+1

<

∞∑
t=k

go,2(t, `)
( 1√

n

)2t+1

< U4(k, `)
( 1√

n

)2k+1

. (6.85)
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Proof. Define c2(t, `) := −π
√

1 + 24`

6
(−1)t

(− 3
2
t

)
. From (6.61) and (6.71), it follows

that for t ≥ 1,

π
√

1 + 24` cosh(α`)

12

(−1)t
(− 3

2
t

)
t

− π
√

1 + 24` sinh(α`)

6α`
− π
√

1 + 24` CU4 (`)

6

(−1)t
(− 3

2
t

)
t2

<

(√
24

24`+ 1

)2t+1

go,2(t, `) = c2(t, `)
S4(t, `)

(−1)t
(− 3

2
t

)
<
π
√

1 + 24` cosh(α`)

12

(−1)t
(− 3

2
t

)
t

− π
√

1 + 24` sinh(α`)

6α`
+
π
√

1 + 24` CL4 (`)

6

(−1)t
(− 3

2
t

)
t2

.

(6.86)

Now, applying (6.72) and (6.73) with s = 1 and 2, respectively, to (6.86), we have
(6.85).

Definition 6.3.42. For k ≥ 1 and ` ≥ 0, define

n0(k, `) := max
k≥1,`≥0

{
(24`+ 1)2

16
,
(k + 3)(24`+ 1)

24

}
.

Definition 6.3.43. Let n0(k, `) be as in Definition 6.3.42. For k ≥ 1 and ` ≥ 0,
define

L̂2(k, `) :=
1(

α0

√
24
)k
(

1− 1 + 24`

4
√
n0(k, l)

)
and Û2(k, `) :=

1(
α0

√
24
)k
(

1+
k(1 + 24`)

3 · n0(k, l)

)
.

Lemma 6.3.44. Let L̂2(k, `), and Û2(k, `) be as in Definition 6.3.43. Let n0(k, `) be
as in Definition 6.3.42. Then for all k ∈ Z≥1 and n > n0(k, `),

eπ
√

2n/3

4n
√

3

L̂2(k, `)
√
n
k

<

√
12 eµ(n−`)

24(n− `)− 1

1

µ(n− `)k
<
eπ
√

2n/3

4n
√

3

Û2(k, `)
√
n
k
. (6.87)

Proof. For all k ≥ 1 and ` ≥ 0, define

E(n, k, `) :=

√
12 eµ(n−`)

24(n− `)− 1

1

µ(n− `)k
, U(n, k, `) =

eπ
√

2n/3

4n
√

3

1
√
n
k
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and

Q(n, k, `) :=
E(n, k, `)

U(n, k, `)
=
e
π
√

2n
3

(√
1− 1+24`

24n
−1

)
(
α0

√
24
)k (

1− 1 + 24`

24n

)− k+2
2
.

Using (6.21) with (m,n, s) 7→ (1, 24n, 24`+ 1), we obtain for all n ≥ 2`+ 1,

−1 + 24`

12n
<

√
1− 1

24n
− 1 =

∞∑
m=1

(
1/2

m

)
(−1)m

(24n)m
< 0,

and consequently for n ≥ n0(k, `),(
1− 1 + 24`

4
√
n0(k, `)

)
< e

−π(1+24`)

6
√
6n < e

π
√

2n
3

(√
1− 1

24n
−1

)
< 1. (6.88)

Therefore

1(
α0

√
24
)k(1− 1 + 24`

24n

)− k+2
2
(

1− 1

4
√
n0(k, `)

)
< Q(n, k, `) <

1(
α0

√
24
)k(1− 1 + 24`

24n

)− k+2
2
.

(6.89)

We estimate
(

1− 1 + 24`

24n

)− k+2
2

by splitting it into two cases depending on whether

k is even or odd.
For k = 2r with r ∈ Z≥0:(

1− 1 + 24`

24n

)− k+2
2

=
(

1− 1 + 24`

24n

)−(r+1)

= 1 +
∞∑
j=1

(
−(r + 1)

j

)
(−1)j(1 + 24`)j

(24n)j
.

From (6.22) with (m, s, n) 7→ (1, r + 1, 24n
24`+1

), for all n > (r+1)(1+24`)
12

, we get

0 <
∞∑
j=1

(
−(r + 1)

j

)
(−1)j(1 + 24`)j

(24n)j
<

(r + 1)(24`+ 1)

12n
,

which is equivalent to

1 <
(

1− 1 + 24`

24n

)− k+2
2
< 1 +

(k + 2)(24`+ 1)

24n
for all n > n0(k, `). (6.90)

192



For k = 2r + 1 with r ∈ Z≥0:(
1− 1 + 24`

24n

)− k+2
2

=
(

1− 1 + 24`

24n

)− 2r+3
2

= 1 +
∞∑
j=1

(
−2r+3

2

j

)
(−1)j(1 + 24`)j

(24n)j
.

Using (6.20) with (m, s, n) 7→ (1, r + 2,
24n

24`+ 1
), for all n > (r+2)(1+24`)

12
, we get

0 <
∞∑
j=1

(
−2`+3

2

j

)
(−1)j

(24n)j
<

(r + 2)(1 + 24`)

6n

which is equivalent to

1 <
(

1− 1 + 24`

24n

)− k+2
2
< 1 +

k(1 + 24`)

3n
for all n > n0(k, `). (6.91)

From (6.90) and (6.91), for all n > n0(k, `) it follows that

1 <
(

1− 1 + 24`

24n

)− k+2
2
< 1 +

k(1 + 24`)

3 · n0(k, `)
. (6.92)

From (6.89) and (6.92), we conclude the proof.

6.4 Inequalities for p(n− `)
Definition 6.4.1. Let (Li(k, `))1≤i≤4 and (Ui(k, `))1≤i≤4 be as in Definitions 6.3.34-

6.3.40. Let Û2(k, `) be as in Definition 6.3.43. Then for all w ∈ Z≥1 with dw/2e ≥ 1,
define

L(w, `) := L1

(⌈w
2

⌉
, `
)

+ L2

(⌈w
2

⌉
, `
)

+ L3

(⌊w
2

⌋
, `
)

+ L4

(⌊w
2

⌋
, `
)
− Û2(w, `)

and

U(w, `) := U1

(⌈w
2

⌉
, `
)

+ U2

(⌈w
2

⌉
, `
)

+ U3

(⌊w
2

⌋
, `
)

+ U4

(⌊w
2

⌋
, `
)

+ Û2(w, `).

Lemma 6.4.2. Let ĝ(k) be as in Theorem 6.3.2 and n0(k, `) as in Definition 6.3.42.
Let g(t, `) be as in (6.67). Let L(w, `) and U(w, `) be as in Definition 6.4.1. If
m ∈ Z≥1 and n > max

{
1, n0(2m, `), ĝ(2m) + `

}
, then

eπ
√

2n/3

4n
√

3

(
2m−1∑
t=0

g(t, `)
√
n
t +

L(2m, `)
√
n

2m

)
< p(n− `) < eπ

√
2n/3

4n
√

3

(
2m−1∑
t=0

g(t, `)
√
n
t +

U(2m, `)
√
n

2m

)
.
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Proof. Following Definition 6.3.20 and from Lemma 6.3.21, we have

∞∑
t=0

g(t, `)
( 1√

n

)t
=

2m−1∑
t=0

g(t, `)
( 1√

n

)t
+

∞∑
t=2m

g(t, `)
( 1√

n

)t
=

2m−1∑
t=0

g(t, `)
( 1√

n

)t
+
∞∑
t=m

(ge,1(t, `) + ge,2(t, `))
( 1√

n

)2t

+
∞∑
t=m

(go,1(t, `) + go,2(t, `))
( 1√

n

)2t+1

.

(6.93)

Using Lemmas 6.3.35-6.3.41 by making the substitution k 7→ m, it follows that

L1(m, `) + L2(m, `)
√
n

2m +
L3(m, `) + L4(m, `)

√
n

2m+1

<
∞∑

t=2m

g(t, `)
( 1√

n

)t
<
U1(m, `) + U2(m, `)

√
n

2m +
U3(m, `) + U4(m, `)

√
n

2m+1 . (6.94)

Moreover, by Lemma 6.3.44 with k = 2m, it follows that

√
12 eµ(n−`)

24(n− `)− 1

1

µ(n− `)2m
<
eπ
√

2n/3

4n
√

3

Û2(2m, `)
√
n

2m . (6.95)

Combining (6.94) and (6.95), and applying to Theorem 6.3.2, we conclude the proof.

Lemma 6.4.3. Let ĝ(k) be as in Theorem 6.3.2 and n0(k, `) as in Definition 6.3.42.
Let g(t, `) be as in Equation (6.67). Let L(w, `) and U(w, `) be as in Definition 6.4.1.
If m ∈ Z≥0 and n > max

{
1, n0(2m+ 1, `), ĝ(2m+ 1) + `

}
, then

eπ
√

2n/3

4n
√

3

(
2m∑
t=0

g(t, `)
√
n
t +

L(2m+ 1, `)
√
n

2m+1

)
< p(n−`) < eπ

√
2n/3

4n
√

3

(
2m∑
t=0

g(t, `)
√
n
t +

U(2m+ 1, `)
√
n

2m+1

)
.

Proof. The proof is analogous to the proof of Lemma 6.4.2.

Definition 6.4.4. Let g(t, `) be as in (6.67), L(w, `), U(w, `) as in Definition 6.4.1.
If w ∈ Z≥1 with dw/2e ≥ 1, define

Ln(w, `) :=
w−1∑
t=0

g(t, `)
( 1√

n

)t
+
L(w, `)√

n
w and Un(w, `) :=

w−1∑
t=0

g(t, `)
( 1√

n

)t
+
U(w, `)√

n
w .
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Theorem 6.4.5. Let ĝ(k) be as in Theorem 6.3.2 and n0(k, `) as in Definition 6.3.42.
Let Ln(w, `) and Un(w, `) be as in Definition 6.4.4. If w ∈ Z≥1 with dw/2e ≥ 1 and
n > max{ĝ(w) + `, n0(w, `)}, then

eπ
√

2n/3

4n
√

3
Ln(w, `) < p(n− `) < eπ

√
2n/3

4n
√

3
Ln(w, `). (6.96)

Proof. Putting Lemmas 6.4.2 and 6.4.3 together, we obtain (6.96).

6.5 Proofs of Bill Chen’s conjectures

Proof of Theorem 6.1.5: To prove the lower bound of (6.16), it is equivalent to show
that

p(n−4)p(n)+3p(n−2)2 > 4

(
1+

π2

16(n− 3)3
− 6

(n− 3)7/2

)
p(n−3)p(n−1). (6.97)

Since 1 +
π2

16n3
− 5

n7/2
> 1 +

π2

16(n− 3)3
− 6

(n− 3)7/2
for all n ≥ 5, it is enough to

show that

p(n− 4)p(n) + 3p(n− 2)2 > 4

(
1 +

π2

16n3
− 5

n7/2

)
p(n− 3)p(n− 1). (6.98)

Choosing w = 12 and applying Theorem 6.4.5, for all n ≥ 2329, we have

p(n−4)p(n)+3p(n−2)2 >

(
eπ
√

2n/3

4n
√

3

)2(
Ln(12, 4)·Ln(12, 0)+3 L2

n(12, 2)

)
, (6.99)

and

p(n− 3)p(n− 1) <

(
eπ
√

2n/3

4n
√

3

)2(
Un(12, 3) · Un(12, 1)

)
. (6.100)

Therefore, it suffices to show that

Ln(12, 4) ·Ln(12, 0)+3 L2
n(12, 2) > 4

(
1+

π2

16n3
− 5

n7/2

)
Un(12, 3) ·Un(12, 1). (6.101)
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Using the Reduce1 command within Mathematica, it can be easily checked that for
all n ≥ 625, (6.101) holds.

Similarly, to prove the upper bound of (6.16), it is equivalent to prove that

p(n− 4)p(n) + 3p(n− 2)2 < 4

(
1 +

π2

16(n− 3)3

)
p(n− 3)p(n− 1). (6.102)

Since 1 +
π2

16n3
< 1 +

π2

16(n− 3)3
for all n ≥ 4, it is enough to show that

p(n− 4)p(n) + 3p(n− 2)2 < 4

(
1 +

π2

16n3

)
p(n− 3)p(n− 1). (6.103)

Choosing w = 12 and applying Theorem 6.4.5, for all n ≥ 2329, we have

p(n−4)p(n)+3p(n−2)2 <

(
eπ
√

2n/3

4n
√

3

)2(
Un(12, 4)·Un(12, 0)+3 U2

n(12, 2)

)
, (6.104)

and

p(n− 3)p(n− 1) >

(
eπ
√

2n/3

4n
√

3

)2(
Ln(12, 3) · Ln(12, 1)

)
. (6.105)

Therefore, it suffices to show that

Un(12, 4) · Un(12, 0) + 3 U2
n(12, 2) < 4

(
1 +

π2

16n3

)
Ln(12, 3) · Ln(12, 1). (6.106)

In a similar way as stated before, it can be easily checked that for all n ≥ 784, (6.101)
holds. We conclude the proof of Theorem 6.1.5 by verifying the inequality (6.16) for
all 218 ≤ n ≤ 2328 with Mathematica.

Proof of Theorem 6.1.7: To prove the lower bound of (6.17), it is equivalent to
show that

p(n− 2)3 + p(n− 4)p(n− 1)2 + p(n− 3)2p(n) >(
1 +

π3

72
√

6(n− 3)9/2
− 8

(n− 3)5

)(
2p(n− 3)p(n− 2)p(n− 1) + p(n− 4)p(n− 2)p(n)

)
.

(6.107)

1Reduce uses cylindrical algebraic decomposition for polynomials over real domains which is
based on Collin’s algorithm [44]. Cylindrical Algebraic Decomposition (CAD) is an algorithm
which proves that a given polynomial in several variables is positive (non-negative).
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As 1 +
π3

72
√

6n9/2
− 7

n5
> 1 +

π3

72
√

6(n− 3)9/2
− 8

(n− 3)5
for all n ≥ 4, it suffices to

show that

p(n− 2)3 + p(n− 4)p(n− 1)2 + p(n− 3)2p(n) >(
1 +

π3

72
√

6n9/2
− 7

n5

)(
2p(n− 3)p(n− 2)p(n− 1) + p(n− 4)p(n− 2)p(n)

)
.

(6.108)

Choosing w = 15 and applying Theorem 6.4.5, for all n ≥ 4047, we have

p(n− 2)3 + p(n− 4)p(n− 1)2 + p(n− 3)2p(n) >(
eπ
√

2n/3

4n
√

3

)3(
L3
n(15, 2) + Ln(15, 4) · L2

n(15, 1) + L2
n(15, 3) · Ln(15, 0)

)
(6.109)

and

2p(n− 3)p(n− 2)p(n− 1) + p(n− 4)p(n− 2)p(n) <(
eπ
√

2n/3

4n
√

3

)3(
2 · Un(15, 3) · Un(15, 2) · Un(15, 1) + Un(15, 4) · Un(15, 2) · Un(15, 0)

)
.

(6.110)

Similar to the proof of (6.101), it can be easily checked that for all n ≥ 1444,

L3
n(15, 2)+Ln(15, 4) · L2

n(15, 1) + L2
n(15, 3) · Ln(15, 0) >

(
1 +

π3

72
√

6n9/2
− 7

n5

)
×(

2 · Un(15, 3) · Un(15, 2) · Un(15, 1) + Un(15, 4) · Un(15, 2) · Un(15, 0)

)
.

(6.111)

Analogously, one can prove that for all n ≥ 2916,

U3
n(15, 2)+Un(15, 4) · U2

n(15, 1) + U2
n(15, 3) · Un(15, 0) <

(
1 +

π3

72
√

6n9/2

)
×(

2 · Ln(15, 3) · Ln(15, 2) · Ln(15, 1) + Ln(15, 4) · Ln(15, 2) · Ln(15, 0)

)
(6.112)
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which is sufficient to prove the upper bound of (6.17). We conclude the proof of
Theorem 6.1.7 by verifying the inequality (6.17) for all 244 ≤ n ≤ 4047 with Math-
ematica.

Proof of Theorem 6.1.9: Corresponding to (6.18), we show(
1 +

π√
24n3/2

)(
p(n− 2)p(n− 1)− p(n− 3)p(n)

)2

>

4
(
p(n− 2)2 − p(n− 3)p(n− 1)

)(
p(n− 1)2 − p(n− 2)p(n)

)
(6.113)

and

4
(
p(n− 2)2−p(n− 3)p(n− 1)

)(
p(n− 1)2 − p(n− 2)p(n)

)
>(

1 +
π√

24n3/2
− 2

n2

)(
p(n− 2)p(n− 1)− p(n− 3)p(n)

)2

.
(6.114)

Applying Theorem 6.4.5 with w = 13, and following the similar method worked out
in the proof of Theorem 6.1.5, we obtain (6.18) for all n ≥ 2842. For 115 ≤ n ≤ 2841,
we verified (6.18) numerically with Mathematica.

6.6 Appendix

In the proofs of Lemmas 6.3.24-6.3.30, we follow the same notations and the proof
strategy as in [21, Subsection 5.2].

Proof of Lemma 6.3.24: Following Definition 6.3.12, write S1(t, `) as follows:

S1(t, `) =
t∑

u=1

(−1)uα2u
`

(2u− 1)!

t∑
s=u

(−1)s

s

(1

2
− s
)
s+1

(−s)u
(s+ u)!

=
t∑

u=1

(−1)uα2u
`

(2u− 1)!

t−u∑
s=0

(−1)s+u

s+ u

(1

2
− s− u

)
s+u+1

(−s− u)u
(s+ 2u)!︸ ︷︷ ︸

=:S1(t,u)

.

From [21, eq. (5.6)], we have

S1(t, u) = (−1)t
(
−3

2

t

)
(−1)u

2u
A1(t, u), (6.115)
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where

A1(t, u) =
t(−t)u(−1)u

(1 + 2t)(t+ u)(t)u
−

(
(−1)t+1(− 3

2
t

) +
1

(1 + 2t)
+

2t

1 + 2t

u∑
i=1

(−t)i(−1)i

(t+ i)(t)i

)
.

Now by Lemmas 6.2.3 and 6.2.4,

(−1)t(− 3
2
t

) − 1

4t2
− u
t
− u2

2t2
≤ A1(t, u) ≤ (−1)t(− 3

2
t

) +
1

4t2
+u
( 2

3t2
− 1

t

)
+
u2

2t2
+
u3

3t2
. (6.116)

From (6.115), it follows that

S1(t, `) = (−1)t
(
−3

2

t

) t∑
u=1

α2u
` A1(t, u)

(2u)!
. (6.117)

Applying (6.116) to (6.117), we get the following lower bound of S1(t, `),

S1(t, `)

(−1)t
(− 3

2
t

)
≥

(
(−1)t(− 3

2
t

) − 1

4t2

)
t∑

u=1

α2u
`

(2u)!
− 1

t

t∑
u=1

uα2u
`

(2u)!
− 1

2t2

t∑
u=1

u2α2u
`

(2u)!

≥

(
(−1)t(− 3

2
t

) − 1

4t2

)(
∞∑
u=0

α2u
`

(2u)!
− 1−

∞∑
u=t+1

α2u
`

(2u)!

)
− 1

t

∞∑
u=0

uα2u
`

(2u)!
− 1

2t2

∞∑
u=0

u2α2u
`

(2u)!
.

>

(
(−1)t(− 3

2
t

) − 1

4t2

)(
∞∑
u=0

α2u
`

(2u)!
− 1− C0(`)

t2

)
− 1

t

∞∑
u=0

uα2u
`

(2u)!
− 1

2t2

∞∑
u=0

u2α2u
`

(2u)!(
by Lemma 6.2.7 and

(−1)t(− 3
2
t

) >
1

4t2
for all t ≥ 1

)

>

(
(−1)t(− 3

2
t

) − 1

4t2

)(
cosh(α`)− 1

)
− C0(`)

t2
− α` sinh(α`)

2t

− 1

2t2

(α2
`

4
cosh(α`) +

α`
4

sinh(α`)
)

(
by Lemma 6.2.5 and

(−1)t(− 3
2
t

) − 1

4t2
< 1 for all t ≥ 1

)

=
(−1)t(− 3

2
t

) (cosh(α`)− 1)− α` sinh(α`)

2t
− CL1 (`)

2t2

(
by Definition 6.3.23

)
. (6.118)
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For the upper bound estimation, we have for all t ≥ 1,

S1(t, `)

(−1)t
(− 3

2
t

)
≤ (−1)t(− 3

2
t

) t∑
u=1

α2u
`

(2u)!
− 1

t

t∑
u=1

uα2u
`

(2u)!
+

1

4t2

t∑
u=1

α2u
`

(2u)!
+

2

3t2

t∑
u=1

uα2u
`

(2u)!
+

1

2t2

t∑
u=1

u2α2u
`

(2u)!
+

1

3t2

t∑
u=1

u3α2u
`

(2u)!

≤ (−1)t(− 3
2
t

) (cosh(α`)− 1)− 1

2t
α` sinh(α`) +

C1(`)

t3
+

1

4t2
cosh(α`) +

1

3t2
α` sinh(α`) +

1

2t2

(
α2
`

4
cosh(α`) +

α`
4

sinh(α`)

)
+

1

3t2

(
3α2

`

8
cosh(α`) +

α`(α
2
` + 1)

8
sinh(α`)

)
(

by Lemmas 6.2.5 and 6.2.7
)

≤ (−1)t(− 3
2
t

) (cosh(α`)− 1)− 1

2t
α` sinh(α`) +

CU1 (`)

t2

(
by Definition 6.3.23

)
. (6.119)

Combining (6.118) and (6.119), we arrive at (6.68) which concludes the proof.
Proof of Lemma 6.3.26: Following Definition 6.3.14, write S2(t, `) as follows:

S2(t, `) =
t−1∑
u=0

(−1)uα2u
`

(2u)!

t−1∑
s=u

(1

2
− s
)
s+1

(
−3

2

t− s− 1

)
(−s)u

(s+ u+ 1)!

=
t−1∑
u=0

(−1)uα2u
`

(2u)!

t−u−1∑
s=0

(1

2
− s− u

)
s+u+1

(
−3

2

t− s− u− 1

)
(−s− u)u

(s+ 2u+ 1)!︸ ︷︷ ︸
=:S2(t,u)

.

(6.120)

From [21, eq. (5.13)], we have

S2(t, u) =

(
−3

2

t

)
(−1)u+1

(
A2,1(t, u) + A2,2(t, u)

)
, (6.121)

where

A2,1(t, u) =
2t(t− u)(−t)u(−1)u

(1 + 2t)(1 + 2u)(t+ u)(t)u
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and

A2,2(t, u) =
(−1)t+1(− 3

2
t

) +
1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−1)i(−t)i
(t+ i)(t)i

.

Combining (6.120) and (6.121), we get

S2(t, `) = −
(
−3

2

t

)(
s2,1(t, `) + s2,2(t, `)

)
, (6.122)

where

s2,1(t, `) =
t−1∑
u=0

α2u
`

(2u)!
A2,1(t, u) and s2,2(t, `) =

t−1∑
u=0

α2u
`

(2u)!
A2,2(t, u). (6.123)

By Lemma 6.2.3, we have

1

1 + 2u
−
u2 + u+ 1

2

t(1 + 2u)
≤ A2,1(t, u) ≤ t− u

t(1 + 2u)
. (6.124)

Applying (6.124) into (6.123) we obtain

t−1∑
u=0

α2u
`

(2u+ 1)!
− 1

t

t−1∑
u=0

u2 + u+ 1
2

(2u+ 1)!
α2u
` ≤ s2,1(t) ≤

t−1∑
u=0

α2u
`

(2u+ 1)!
− 1

t

t−1∑
u=0

uα2u
`

(2u+ 1)!
,

and consequently,

∞∑
u=0

α2u
`

(2u+ 1)!
−
∞∑
u=t

α2u
`

(2u+ 1)!
− 1

t

∞∑
u=0

u2 + u+ 1
2

(2u+ 1)!
α2u
` ≤ s2,1(t, `) ≤

∞∑
u=0

α2u
`

(2u+ 1)!
− 1

t

(
∞∑
u=0

uα2u
`

(2u+ 1)!
−
∞∑
u=t

uα2u
`

(2u+ 1)!

)
.

(6.125)

By Lemma 6.2.7, it follows that

∞∑
u=t

α2u
`

(2u+ 1)!
≤ 2C1(`)

α2
` t

2
and

∞∑
u=t

uα2u
`

(2u+ 1)!
≤ 2C2(`)

α2
` t

2
. (6.126)

Applying (6.126) into (6.125) and by Lemma 6.2.5, we obtain

sinh(α`)

α`
−
CL2,1(`)

t
≤ s2,1(t, `) ≤ sinh(α`)

α`
+
CU2,1(`)

t
. (6.127)
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Next we apply Lemma 6.2.4 and get

2u+ 1

2t
− 4u3 + 6u2 + 8u+ 3

12t2
+

(−1)t+1(− 3
2
t

) ≤ A2,2(t, u) ≤ 2u+ 1

2t
+

(−1)t+1(− 3
2
t

) . (6.128)

Plugging (6.128) into (6.123), we obtain

1

2t

∞∑
u=0

(2u+ 1)α2u
`

(2u)!
− 1

2t

∞∑
u=t

(2u+ 1)α2u
`

(2u)!
+

(−1)t+1(− 3
2
t

) ∞∑
u=0

α2u
`

(2u)!
− 1

12t2

∞∑
u=0

p3(u)α2u
`

(2u)!

≤ s2,2(t, `) ≤ 1

2t

∞∑
u=0

(2u+ 1)α2u
`

(2u)!
+

(−1)t+1(− 3
2
t

) ∞∑
u=0

α2u
`

(2u)!
− (−1)t+1(− 3

2
t

) ∞∑
u=t

α2u
`

(2u)!
,

(6.129)

where p3(u) = 4u3 + 6u2 + 8u+ 3. By Lemma 6.2.7 we obtain

∞∑
u=t

α2u
`

(2u)!
≤ 4C2(`)

α2
` t

2
and

∞∑
u=t

(2u+ 1)α2u
`

(2u)!
≤ 8C3(`)

α2
` t

2
. (6.130)

Note that for all t ≥ 1,
(−1)t(− 3

2
t

) =
22t+1

t+ 1

1(
2t+2
t+1

) < 1. (6.131)

Combining (6.130) with (6.131) and applying Lemma 6.2.7 to (6.129), we obtain

(−1)t+1(− 3
2
t

) cosh(α`)+
csh(α`)

2t
−C2,2(α`)

t2
≤ s2,2(t, `) ≤ (−1)t+1(− 3

2
t

) cosh(α`)+
csh(α`)

2t
+

4C2(`)

α2
` t

2
.

(6.132)
Applying (6.127) and (6.132) to (6.122), we obtain (6.69).

Proof of Lemma 6.3.28: Recalling Definition 6.3.16, rewrite S3(t, `) as follows:

S3(t, `) =
t∑

u=1

(−1)uα2u
`

(2u− 1)!

t∑
s=u

1

s

(1

2
− s
)
s+1

(
−3

2

t− s

)
(−s)u

(s+ u)!

=
t∑

u=1

(−1)uα2u
`

(2u− 1)!

t−u∑
s=0

1

s+ u

(1

2
− s− u

)
s+u+1

(
−3

2

t− s− u

)
(−s− u)u
(s+ 2u)!︸ ︷︷ ︸

=:S3(t,u)

.

(6.133)
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From [21, eq. (5.34)], we have

S3(t, u) =

(
−3

2

t

)
(−1)u

(
A3,1(t, u) + A3,2(t, u)

)
, (6.134)

where

A3,1(t, u) =
t(1 + 2t− 2u)(−t)u(−1)u

2(1 + 2t)u(t+ u)(t)u

and

A3,2(t, u) =
(−1)t+1(− 3

2
t

) +
1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−t)i(−1)i

(t+ i)(t)i
.

From (6.133) and (6.134), it follows that

S3(t, `) =

(
−3

2

t

)(
s3,1(t) + s3,2(t)

)
, (6.135)

with

s3,1(t, `) =
t∑

u=1

α2u
`

(2u− 1)!
A3,1(t, u) and s3,2(t, `) =

t∑
u=1

α2u
`

(2u− 1)!
A3,2(t, u). (6.136)

By Lemma 6.2.3, we have

−
3u2 + 2u+ 1

2

4ut
≤ A3,1(t, u)− 1

2u
≤ 0. (6.137)

Applying (6.137) into (6.136) and by Lemmas 6.2.7 and 6.2.5, we obtain

− C3,1(`)

t
≤ s3,1(t, `) + 1− cosh(α`) ≤ 0. (6.138)

Now, by Lemma 6.2.4, we obtain

− 4u3 + 6u2 + 8u+ 3

12t2
≤ A3,2(t, u) +

(−1)t(− 3
2
t

) − 2u+ 1

2t
≤ 0. (6.139)

Applying (6.139) to (6.136), it follows that

s3,2(t, `)+
(−1)t(− 3

2
t

) ∞∑
u=1

α2u
`

(2u− 1)!
− 1

2t

∞∑
u=1

(2u+ 1)α2u
`

(2u− 1)!
≤ (−1)t(− 3

2
t

) ∞∑
u=t+1

α2u
`

(2u− 1)!
, (6.140)
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and

s3,2(t, `) +
(−1)t(− 3

2
t

) ∞∑
u=1

α2u
`

(2u− 1)!
− 1

2t

∞∑
u=1

(2u+ 1)α2u
`

(2u− 1)!
≥

− 1

12t2

∞∑
u=1

p3(u)α2u
`

(2u− 1)!
− 1

2t

∞∑
u=t+1

(2u+ 1)α2u
`

(2u− 1)!
,

(6.141)

where p3(u) = 4u3 + 6u2 + 8u+ 3 is as in (6.129). By Lemma 6.2.7 we obtain

∞∑
u=t+1

α2u
`

(2u− 1)!
≤ 2C1(`)

t2
and

∞∑
u=t+1

(2u+ 1)α2u
`

(2u− 1)!
≤ 4C2(`) + 2C1(`)

t2
. (6.142)

Applying (6.142) and Lemma 6.2.5 into (6.140) and (6.141), we have

− C3,2(`)

t2
≤ s3,2(t, `) +

(−1)t(− 3
2
t

) α` sinh(α`)−
1

2t
sch(α`) ≤

3C1(`)

t2
. (6.143)

Applying (6.138) and (6.143) into (6.135) we arrive at (6.70).
Proof of Lemma 6.3.30: Following Definition 6.3.18, write S4(t, `) as follows:

S4(t, `) =
t∑

u=0

(−1)uα2u
`

(2u)!

t∑
s=u

(−1)s
(1

2
− s
)
s+1

(−s)u
(s+ u+ 1)!

=
t∑

u=0

(−1)uα2u
`

(2u)!

t−u∑
s=0

(−1)s+u
(1

2
− s− u

)
s+u+1

(−s− u)u
(s+ 2u+ 1)!︸ ︷︷ ︸

=:S4(t,u)

.(6.144)

From [21, eq. (5.53)], we have

S4(t, u) =

(
−3

2

t

)
(−1)u+t

(
A4,1(t, u) + A4,2(t, u)

)
, (6.145)

where

A4,1(t, u) =
t(−t)u(−1)u

2(1 + 2t)(t+ u)(t+ u+ 1)(t)u

and

A4,2(t, u) =
1

1 + 2u

(
(−1)t(− 3

2
t

) − 1

1 + 2t
− 2t

1 + 2t

u∑
i=1

(−1)i(−t)i
(t+ i)(t)i

)
.

204



From (6.144) and (6.145) it follows that

S4(t, `) = (−1)t
(
−3

2

t

)(
s4,1(t, `) + s4,2(t, `)

)
, (6.146)

where

s4,1(t, `) =
t∑

u=0

α2u
`

(2u)!
A4,1(t, u) and s4,2(t) :=

t∑
u=0

α2u
`

(2u)!
A4,2(t). (6.147)

Lemmas 6.2.2 and 6.2.3 imply that

1

4t2

(
1−

u2 + u+ 3
2

t

)
≤ A4,1(t, u) ≤ 1

4t2
. (6.148)

From (6.148) and (6.147), we obtain

1

4t2

∞∑
u=0

α2u
`

(2u)!
− 1

4t2

∞∑
u=t+1

α2u
`

(2u)!
− 1

4t3

∞∑
u=0

(u2 + u+ 3
2
)α2u

`

(2u)!
≤ s4,1(t, `) ≤ 1

4t2

∞∑
u=0

α2u
`

(2u)!
.

(6.149)
Applying Lemmas 6.2.7 and 6.2.5 to (6.149), it follows that

1

4t2
cosh(α`)−

C4,1(`)

t3
≤ s4,1(t, `) ≤ 1

4t2
cosh(α`). (6.150)

Now, by Lemma 6.2.4, we obtain

0 ≤ A4,2(t, u)− 1

1 + 2u

(
(−1)t(− 3

2
t

) − 2u+ 1

2t

)
≤ 1

1 + 2u

p3(u)

12t2
, (6.151)

where p3(u) is as in (6.129). Plugging (6.151) into (6.147), it follows that

−(−1)t(− 3
2
t

) ∞∑
u=t+1

α2u
`

(2u+ 1)!
≤s4,2(t, `)−

∞∑
u=0

α2u
`

(2u+ 1)!

(
(−1)t(− 3

2
t

) − 2u+ 1

2t

)
≤

1

12t2

∞∑
u=0

p3(u)α2u
`

(2u+ 1)!
+

1

2t

∞∑
u=t+1

(2u+ 1)α2u
`

(2u+ 1)!
.

(6.152)

Using Lemma 6.2.7, we get

∞∑
u=t+1

α2u
`

(2u+ 1)!
≤ C0(`)

t2
and

∞∑
u=t+1

(2u+ 1)α2u
`

(2u+ 1)!
=

∞∑
u=t+1

α2u
`

(2u)!
≤ C0(`)

t2
. (6.153)
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Plugging (6.153) to (6.152) and using Lemma 6.2.5, we finally obtain

−2C0(`)

3t2
≤ s4,2(t, `)− (−1)t(− 3

2
t

) sinh(α`)

α`
+

cosh(α`)

2t
≤

(α2 + 6) cosh(α`) + 3α` sinh(α`) + 12C0(`)

24t2
.

(6.154)

We conclude the proof by combining (6.150), (6.154), and (6.146).

6.7 Further applications

6.7.1 Higher order Laguerre inequalities for p(n)

The partition function p(n) satisfies Laguerre inequality of order m if

Lm(p(n)) :=
1

2

2m∑
k=0

(−1)k+m

(
2m

k

)
p(n+ k)p(2m− k + n).

In [145], Wagner proved the mth order Laguerre inequalities for the partition function
as n → ∞ for all m ≥ 2. He proposed a conjecture for the cut offs (NL(m))1≤m≤10

such that for all n ≥ NL(m), p(n) satisfies the mth order Laguerre inequalities. Wang
and Yang [149] settled the case m = 2. Dou and Wang [58] gave an explicit bounds
for (NL(m))3≤m≤10 and consequently, Wagner’s conjecture for the cases m = 3 and
4 have been settled.
For 2 ≤ m ≤ 11, let NL(m) denotes the cut-off conjectured by Wagner, w(m) de-
notes the truncation point as given in Theorem 6.4.5, NB(m) denotes the cut-off
from which point on we are able to show that (p(n))n≥NB(m) satisfies Laguerre in-
equalities of order m, and T (m) denotes the time (in seconds) taken in computation
with ‘Reduce’ command in Mathematica.

Enumeration of cut-off
m NL(m) w(m) NB(m) T (m)
2 184 11 1873 0.76
3 531 15 4049 1.53
4 1102 20 8164 4.61
5 1923 23 11436 7.51
6 3014 30 21577 11.46

Enumeration of cut-off
m NL(m) w(m) NB(m) T (m)
7 4391 34 29034 25.34
8 6070 39 40138 40.88
9 8063 45 56180 126.91
10 10382 50 71893 177.34
11 13037 55 89803 366.15
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Applying Theorem 6.4.5 with (w(m))2≤m≤11, we obtain the following theorem.

Theorem 6.7.1. For 2 ≤ m ≤ 11,

Lm(p(n− 2m)) > 0 for all n > NL(m). (6.155)

Remark 6.7.2. In spite of having Wagner’s proof on positivity of Lm(p(n)) as n→
∞, a natural question arises: what is the growth of Lm(p(n)) as n→∞?

6.7.2 Asymptotic growth of ∆r
jp(n)

Let ∆ be the difference operator defined on a sequence (a(n))n≥0 by ∆(a(n)) :=
a(n+1)−a(n). A r-fold applications of ∆ is denoted by ∆r. Recently, Gomez, Males,
and Rolen [66] generalized the ∆ operator by introducing a shift parameter j, defined
as ∆2

j(a(n)) := a(n)− 2a(n− j) + a(n− 2j), and studied the positivity of ∆2
j(p(n)).

Consequently, they also proved that Nk(m,n)−Nk(m+ 1, n) > 0, where the k-rank
function Nk(m,n) which counts the number of partitions of n into at least (k − 1)
successive Durfee squares with k-rank equal to m (see [64]). Following Theorem 6.4.5,
we obtain the asymptotic expansion of ∆r

j(p(n)) :=
∑r

m=0(−1)m
(
m
r

)
p(n−m · j) for

any positive integer r, which finally completes the work of Odlyzko [114] on ∆rp(n)
(set j = 1) by proving its asymptotic growth. Works related to the positivity of
∆rp(n) can be found in [67, 71, 5, 87].

Following the notation from [68], here
{
n
m

}
denotes the Stirling number of the

second kind.

Lemma 6.7.3. Let g(t, `) be as in Equation 6.67. Then for all r ≥ 1,

r∑
m=0

(−1)m
(
r

m

) r+1∑
t=0

g(t,m · j)
√
n
t =

(π · j√
6

)r 1√
n
r−

(π · j√
6

)r−1 j

4

[
π2

36
(1 + 12jr) + (r2 + 3r + 2)

]
1

√
n
r+1 .

(6.156)

Proof. Following (6.67), we have

r∑
m=0

(−1)m
(
r

m

) r+1∑
t=0

g(t,m · j)
√
n
t

=
r∑

m=0

(−1)m
(
r

m

) r+1∑
t=0

(1 + 24m · j
−4
√

6n

)t
×
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t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k 1

(1 + 24m · j)k

=
r+1∑
t=0

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k( 1

−4
√

6n

)t
×

r∑
m=0

(−1)m
(
r

m

)
(1 + 24m · j)t−k

=
r+1∑
t=0

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k( 1

−4
√

6n

)t
×

t−k∑
`=0

(
t− k
`

)
(24j)`

r∑
m=0

(−1)m
(
r

m

)
m`

=
r+1∑
t=0

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k( 1

−4
√

6n

)t t−k∑
`=0

(
t− k
`

)
(24j)`(−1)rr!

{
`

r

}
.

(6.157)

We observe that for
{
`
r

}
= 0 for all ` < r. Therefore, the minimal choice for

(t, k, `) = (r, 0, r) so that the sum on the right hand side of (6.157) to be non-zero.
For t = r + 1, we have two choices; i.e., (k, `) = (1, r) and for k = 0, ` ∈ {r, r + 1}.
Therefore, we have

r∑
m=0

(−1)m
(
r

m

) r+1∑
t=0

g(t,m · j)
√
n
t

=
r+1∑
t=r

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k( 1

−4
√

6n

)t
×

t−k∑
`=0

(
t− k
`

)
(24j)`(−1)rr!

{
`

r

}
=
(π · j√

6

)r 1√
n
r +[

1∑
k=0

(
r + 2

k

)
r + 2− k

(r + 2− 2k)!

(π
6

)r+1−2k
r+1−k∑
`=r

(24j)`(−1)rr!

{
`

r

}]
1

(−4
√

6n)r+1
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=
(π · j√

6

)r 1√
n
r −

(π · j√
6

)r−1 j

4

[
π2

36
(1 + 12jr) + (r2 + 3r + 2)

]
1

√
n
r+1 . (6.158)

Definition 6.7.4. For all r ≥ 1, define

Cr(j) :=
(π · j√

6

)r
,

Cr+1(j) :=
(π · j√

6

)r−1 j

4

[
π2

36
(1 + 12jr) + (r2 + 3r + 2)

]
,

Ũr(j) :=

br/2c∑
m=0

(
r

2m

)
U(r + 2, 2m · j)−

b(r−1)/2c∑
m=0

(
r

2m+ 1

)
L(r + 2, (2m+ 1)j)

and

L̃r(j) :=

br/2c∑
m=0

(
r

2m

)
L(r + 2, 2m · j)−

b(r−1)/2c∑
m=0

(
r

2m+ 1

)
U(r + 2, (2m+ 1)j).

Lemma 6.7.5. For all n > max
{
ĝ(r + 2) + r · j, n0(r + 2, r · j)

}
, we have

eπ
√

2n/3

4n
√

3

(
M̃r(n, j) +

L̃r(j)√
n
r+2

)
< ∆r

j(p(n)) <
eπ
√

2n/3

4n
√

3

(
M̃r(n, j) +

Ũr(j)√
n
r+2

)
, (6.159)

where

Mr(n, j) =
Cr(j)√
n
r −

Cr+1(j)
√
n
r+1 .

Proof. We split ∆r
j(p(n)) as follows:

∆r
j(p(n)) =

r∑
m=0

(−1)m
(
m

r

)
p(n−m · j)

=

br/2c∑
m=0

(
r

2m

)
p(n− 2m · j)−

b(r−1)/2c∑
m=0

(
r

2m+ 1

)
p(n− (2m+ 1) · j).

(6.160)

Applying Theorem 6.4.5 for each of the above two factors, we obtain (6.159).
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From Lemma 6.7.5, we obtain the following theorem.

Theorem 6.7.6. For all r, j ∈ Z≥1,

∆r
j(p(n)) ∼

(
π · j/

√
6
)r

4
√

3

eπ
√

2n/3

√
n
r+2 as n→∞. (6.161)

Corollary 6.7.7. For j = 1 and r ∈ Z≥1, we have

∆r(p(n)) ∼

(
π/
√

6
)r

4
√

3

eπ
√

2n/3

√
n
r+2 as n→∞.

Theorem 6.7.8. For all r, j ∈ Z≥1,

∆r
j(p(n)) ∼ eπ

√
2n/3

4n
√

3

(π · j√
6n

)r ∞∑
t=0

g̃r,j(t)√
n
t as n→∞, (6.162)

where

g̃r,j(t) =
(t+ r + 1)r!

(−4
√

6)t

t∑
k=0

t−k∑
`=0

(
t+ r

`+ r

)(
t− `
k

)
1

(t+ r + 1− 2k)!

(π
6

)t−2k

(24j)`
{
`+ r

r

}
.

Proof. Letting w →∞, from (6.96) it follows that

∆r
j(p(n)) =

r∑
m=0

(−1)m
(
m

r

)
p(n−m · j)

∼
n→∞

r∑
m=0

(−1)m
(
r

m

) ∞∑
t=0

g(t,m · j)
√
n
t .

(6.163)

From Lemma 6.7.3, for 0 ≤ t ≤ r − 1 we have,

r∑
m=0

(−1)m
(
r

m

) r−1∑
t=0

g(t,m · j)
√
n
t = 0. (6.164)

From (6.163) and (6.164), as n→∞ we get,

∆r
j(p(n))
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∼
r∑

m=0

(−1)m
(
r

m

) ∞∑
t=r

g(t,m · j)
√
n
t

=
∞∑
t=r

(t+1)/2∑
k=0

1

(−4
√

6n)t

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k

×

r∑
m=0

(−1)m
(
r

m

)
(1 + 24m · j)t−k

=
∞∑
t=r

(t+1)/2∑
k=0

t−k∑
`=0

1

(−4
√

6n)t

(
t+ 1

k

)(
t− k
`

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k

(24j)` ×

r∑
m=0

(−1)m
(
r

m

)
m`

= (−1)rr!
∞∑
t=r

(t+1)/2∑
k=0

t−k∑
`=0

1

(−4
√

6n)t

(
t+ 1

k

)(
t− k
`

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k

(24j)`
{
`

r

}
:= (−1)rr!

∞∑
t=r

A(t, r) = (−1)rr!
∞∑
t=0

A(t+ r, r). (6.165)

Now

A(t+ r, r)

=
(4π · j)r

(−4
√

6n)r+t

t∑
k=0

t−k∑
`=0

(
t+ r

`+ r

)(
t− `
k

)
t+ r + 1

(t+ r + 1− 2k)!

(π
6

)t−2k

(24j)`
{
`+ r

r

}
.

(6.166)

Applying (6.166) to (6.165), we finally obtain (6.162).

Corollary 6.7.9. For j ∈ Z≥1,

∆1
j(p(n)) ∼ eπ

√
2n/3

12
√

2n3/2
πj

∞∑
t=0

g̃1,j(t)√
n
t as n→∞, (6.167)

where

g̃1,j(t) =
(t+ 2)

(−4
√

6)t

t∑
k=0

t−k∑
`=0

(
t+ 1

`+ 1

)(
t− `
k

)
1

(t+ 2− 2k)!

(π
6

)t−2k

(24j)`
(
`+ 1

)
.
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Remark 6.7.10. Replacing n 7→ n−k−m+1 := nk and plugging j = 1 in Corollary
6.7.9, for all m > n/2, we have the full asymptotic expansion of Nk(m,n) with respect
to the base 1√

nk
t . But in order to get the asymptotic expansion with respect to the

base 1√
n
t , we directly employ Theorem 6.4.5 and obtain for m > n/2,

Nk(m,n) ∼
n→∞

eπ
√

2n/3

4n
√

3

∞∑
t=0

gk(t)√
n
t , (6.168)

where
gk(t) := g(t, k +m− 1)− g(t, k +m).

For k = 1, 2 we get the asymptotic expansion of M(m,n) and N(m,n) respectively.

Corollary 6.7.11. For j ∈ Z≥1,

∆2
j(p(n)) ∼ eπ

√
2n/3

24
√

3n2
π2j2

∞∑
t=0

g̃2,j(t)√
n
t as n→∞, (6.169)

where

g̃2,j(t) =
(2t+ 6)

(−4
√

6)t

t∑
k=0

t−k∑
`=0

(
t+ 2

`+ 2

)(
t− `
k

)
1

(t+ 3− 2k)!

(π
6

)t−2k

(24j)`
(
2`+1 − 1

)
.

Remark 6.7.12. By making the substitution n 7→ n− k−m+ 1 := nk and plugging
j = 1 in Corollary 6.7.11, for all m > n/2, we have the full asymptotic expansion
of Nk(m,n) − Nk(m + 1, n) with respect to the base 1√

nk
t . But in order to get the

asymptotic expansion with respect to the base 1√
n
t , we directly employ Theorem 6.4.5

and obtain for m > n/2,

Nk(m,n)−Nk(m+ 1, n) ∼
n→∞

eπ
√

2n/3

4n
√

3

∞∑
t=0

g̃k(t)√
n
t , (6.170)

where
g̃k(t) := g(t, k +m− 1)− 2g(t, k +m) + g(t, k +m+ 1).

For k = 1, 2 we get the asymptotic expansion of M(m,n)−M(m+1) and N(m,n)−
N(m+ 1, n) respectively.
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6.7.3 Higher order log-concavity for p(n)

Recall the definition of r-fold log-concavity of a sequence (an)n≥0 from Section 2.5.

Theorem 6.7.13. For r ∈ {1, 2, 3} and n > max
{
ĝ(3·2r−2)+2r, n0(3·2r−r, 2r)

}
:=

N(r),

Lr(p(n− r)) =

(
eπ
√

2n/3

4n
√

3

)2r(
π2r−1

√
2
r2+r+1√

3
r2−r+1√

n
3(2r−1)

+O

(
1

√
n

3·2r−2

))
(6.171)

Proof. For r = 1, L(p(n− 1)) = p(n− 1)2 − p(n)p(n− 2). Applying Theorem 6.4.5
with w = 4, for all n > N(4) = 151 we have

L(p(n− 1)) =

(
eπ
√

2n/3

4n
√

3

)2( 3∑
t=0

g(t, 1)2 − g(t, 0)g(t, 2)
√
n
t +O

( 1

n2

))

=

(
eπ
√

2n/3

4n
√

3

)2(
π

2
√

6n3/2
+O

( 1

n2

))
.

(6.172)

Define
g2(t, `) := g(t, `)2 − g(t, `− 1)g(t, `+ 1).

Now for r = 2, applying Theorem 6.4.5 with w = 10, for all n > N(10) = 1473 it
follows that

L2(p(n− 2)) =

(
eπ
√

2n/3

4n
√

3

)4( 9∑
t=0

g2(t, 2)2 − g2(t, 3)g2(t, 1)
√
n
t +O

( 1

n5

))

=

(
eπ
√

2n/3

4n
√

3

)4(
π3

24
√

6n9/2
+O

( 1

n5

))
.

(6.173)

Define
g3(t, `) := g2(t, `)2 − g2(t, `− 1)g2(t, `+ 1).

Finally for r = 3, from Theorem 6.4.5 with w = 22, for all n > N(22) = 10273 we
get

L3(p(n− 3)) =

(
eπ
√

2n/3

4n
√

3

)8( 21∑
t=0

g3(t, 3)2 − g3(t, 4)g3(t, 2)
√
n
t +O

( 1

n11

))

=

(
eπ
√

2n/3

4n
√

3

)8(
π7

1728
√

6n21/2
+O

( 1

n11

))
.

(6.174)
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Remark 6.7.14. For r ∈ {1, 2}, we obtain the following two inequalities for Lr(p(n−
r)) using (6.96). For all n > 676,(

eπ
√

2n/3

4n
√

3

)2(
π

2
√

6n3/2
− 4

n2

)
< L1(p(n− 1)) <

(
eπ
√

2n/3

4n
√

3

)2(
π

2
√

6n3/2
+

4

n2

)
;

(6.175)
and for all n > 5499,(
eπ
√

2n/3

4n
√

3

)4(
π3

24
√

6n9/2
− 10

n5

)
< L2(p(n− 2)) <

(
eπ
√

2n/3

4n
√

3

)4(
π3

24
√

6n9/2
+

10

n5

)
.

(6.176)
Equations (6.175) and (6.176) retrieve that (p(n))n≥26 is log-concave and (p(n))n≥222

is 2-log-concave respectively along with the asymptotic growths.
Following the proof of Theorem 6.7.13, it suggests that for all n > N(r),

Lr(p(n−r)) =

(
eπ
√

2n/3

4n
√

3

)2r(3(2r−1)∑
t=0

gr(t, r)
2 − gr(t, r + 1)gr(t, r − 1)

√
n
t +O

(
1

√
n

3·2r−2

))
,

where gr(t, r) = gr−1(t, r)2 − gr−1(t, r − 1)gr−1(t, r + 1) for all r ≥ 2 and g1(t, r) =
g(t, r).
Moreover, following (6.172)-(6.174), it further suggests that

3(2r−1)∑
t=0

gr(t, r)
2 − gr(t, r + 1)gr(t, r − 1)

√
n
t =

Gr
√
n

3(2r−1)
,

where Gr = gr(3(2r − 1), r)2 − gr(3(2r − 1), r + 1)gr(3(2r − 1), r − 1). This finally
leads us to make the following conjecture.

Conjecture 6.7.15. For r ∈ Z≥1 and n > max
{
ĝ(3 · 2r− 2) + 2r, n0(3 · 2r− r, 2r)

}
,

Lrp(n− r) ∼ π2r−1

√
2
r2+r+1√

3
r2−r+1√

n
3(2r−1)

(
eπ
√

2n/3

4n
√

3

)2r

, as n→∞. (6.177)

Remark 6.7.16. The 2-log-concavity for the partition function has been studied
independently in [82, Theorem 1.6] and [79, Page 128]. Similar to the proofs of
Theorems 6.1.5-6.1.9, (p(n))n≥1873 is 2-log-concave also follows directly from Theo-
rem 6.4.5 by choosing w = 11 and with Mathematica, we confirm that (p(n))n≥221 is
2-log-concave.
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We conclude this section with a list of further possible ideas that emerged from
our work.

1. Partition inequalities arising from truncated theta series that has been doc-
umented in [9, 10, 59] among many research works done by Andrews, Guo,
Merca, Yee, Zeng, to name a few. Despite having combinatorial proofs of
such inequalities for p(n), it seems that no such inequalities have been traced
via the analytic approach. Theorem 6.4.5 might play a key role in proving
these inequalities. More generally, given non-trivial linear homogeneous par-
tition inequalities considered by Merca and Katriel [83, 108], it would be nice
to develop an algorithm by making an appropriate choice for w and applying
Theorem 6.4.5 to decide whether such a given inequality holds or not.

2. Starting from the estimates of Dawsey and Masri [50] on Andrews’ spt function,
one can follow the similar method as worked out in this chapter to settle all
the conjectures on inequalities for spt function pertaining to the invariants of
a quartic binary form given by Chen [36].
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Chapter 7

Inequalities for the partition
function arising from truncated
theta series

Positivity questions related to the partition function arising from classical theta
identities have been studied in the combinatorial and q-series framework. Two such
identities that emerge from truncation of Euler’s pentagonal number theorem and
an identity due to Gauss are the predominant ones among others. In this chapter,
we prove the asymptotic growth of coefficients of truncation of theta series directly
from inequalities for the shifted partition function rather than taking a detour to
Wright’s circle method. Recently, Andrews and Merca conjectured that for n odd or
k even,

Mk(n) ≥ (−1)k−1

k−1∑
j=0

(−1)j
(
p(n− j(2j + 1))− p(n− (j + 1)(2j + 1))

)
,

where Mk(n) = (−1)k−1

k−1∑
j=0

(−1)j
(
p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1)

)
. We

confirm the conjecture for all n ≥ N(k) with explicit information about N(k) by
determining the asymptotic growth of the difference between the alternating sums
presented in the above inequality. This in turn shows that the conjecture of Andrews
and Merca is even true for the excluded case; i.e., n even and k odd with n > N(k).
Moreover we modify the error bound in the asymptotic expansion of Mk(n), obtained
by Chern. We also present an unified structure to obtain asymptotic growths up to
any order as we please for such alternating sums involving the partition function.
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7.1 Positivity of alternating sums involving the

partition function

A partition of a positive integer n is a finite non-increasing sequence of positive
integers π1, π2, . . . , πr such that

∑r
i=1 πi = n. The partition (π1, π2, . . . , πr) will be

denoted by π, and we shall write π ` n to denote that π is a partition of n. The
partition function p(n) is the number of partitions of n. Due to Euler, the generating
function of p(n) is

∞∑
n=0

p(n)qn =
1

(q; q)∞
.

Here and throughout the rest of this section, we follow the standard notation for the
q-shifted factorial

(a; q)n =
n−1∏
k=0

(1− aqk) and (a; q)∞ =
∞∏
k=0

(1− aqk).

One of the more well known results in the theory of partitions is Euler’s pentagonal
number theorem [8, Equation (1.3.1)] which states that

(q; q)∞ =
∞∑

k=−∞

(−1)kqk(3k+1)/2. (7.1)

Applying the principle of mathematical induction and q-binomial theorem, Andrews
and Merca [9] showed that the truncation of (7.1) has nonnegative coefficients.

Theorem 7.1.1. [9, Theorem 1.1] For n > 0, k ≥ 1,

(−1)k−1

k−1∑
j=0

(−1)j
(
p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1)

)
= Mk(n), (7.2)

where Mk(n) is the number of partitions of n in which k is the least integer that is
not a part and there are more parts > k than there are < k.

As a corollary of Theorem 7.1.1, they proved thatMk(n) ≥ 0 with strict inequality
for n ≥ k(3k + 1)/2, see [9, Corollary 1.3]. Yee [154] gave a combinatorial proof of
Theorem 7.1.1. Burnette and Kolitsch [89, 90] gave combinatorial interpretation
for Mk(n) using partition pairs. In [147], Wang explained Mk(n) as the difference
between size of two sets of partitions based on its rank enumeration. An asymptotic
estimation for Mk(n) was given by Chern [40] using Wright’s circle method.
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Theorem 7.1.2. [40, Theorem 1.1] Let ε > 0 be arbitrarily small. Then as n→∞,
we have, for k << n1/8−ε,

Mk(n) =
π

12
√

2
kn−3/2e2π

√
n/
√

6 +O
(
k3n−7/4e2π

√
n/
√

6
)
. (7.3)

Applying an extended version of Bailey’s transform, Bachraoui [59, Corollary 1
and 2] obtained the following two inequalities for the partition function in the spirit
of Andrews and Merca.

Apart from Euler’s pentagonal number theorem, the following is another classical
theta identity [8, Equation (2.2.13)] due to Gauss (or sometimes Jacobi):

(q2; q2)∞
(−q; q2)∞

=
∞∑
j=0

(−q)j(j+1)/2. (7.4)

Starting from Rogers-Fine identity, Andrews and Merca [10] retrieved Theorem 7.1.1
and studying the truncated version of (7.4), obtained the following result.

Theorem 7.1.3. [10, Theorem 1.9] For n, k ≥ 1,

(−q; q2)∞
(q2; q2)∞

2k−1∑
j=0

(−q)j(j+1)/2 = 1− (−1)k
(−q; q2)k
(q2; q2)k

∞∑
j=0

qk(2j+2k+1)(−q2j+2k+3; q2)∞
(q2k+2j+2; q2)∞

.

(7.5)

Consequently, they proved the following infinite family of inequalities for the
partition function.

Corollary 7.1.4. [10, Corollary 11] If at least one of n and k is odd,

M̃k(n) := (−1)k−1

k−1∑
j=0

(−1)j
(
p(n− j(2j + 1))− p(n− (j + 1)(2j + 1))

)
≥ 0. (7.6)

Ballantine, Merca, Passary, and Yee [12, Theorem 3] gave a combinatorial in-

terpretation for M̃k(n) in term of overpartitions. Andrews and Merca proposed the

following conjecture with regards to Mk(n) and M̃k(n).

Conjecture 7.1.5. (Andrews-Merca)[10] For n odd or k even,

Mk(n) ≥ M̃k(n). (7.7)
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In [108, Theorem 1.2], Merca and Katriel studied a family of non-trivial homo-
geneous partition inequalities from the framework of Prouhet-Tarry-Escott problem
[55, Chapter XXIV] that arises in Diophantine equations. Using this set up, they
proved that Conjecture 7.1.5 is true for k odd and for sufficiently large n.

The main motivation of this chapter is to derive asymptotic growth of the afore-
mentioned alternating sums involving the partition function. We construct an unified
framework by employing the infinite family of inequalities obtained by the first au-
thor [16, Theorem 4.5] so as to get the desired asymptotic growth. Of course, the
inequalities presented before are much stronger in the sense that it predicts the exact
threshold,say N(k) for n from which the inequality holds. For example, in context
of Theorem 7.1.1, we already know that Mk(n) > 0 for all n ≥ k(3k + 1)/2 but
here our goal is to get to the asymptotic growth. Nonetheless, we also derive an
explicit threshold for n which is higher than the optimal one. Studies on truncated
theta series identities already unfolded the combinatorial facets through the jargon
of partitions, whereas in this chapter, we unearth the other facet of such problems
by studying asymptotic analysis for the partition function.

Asymptotic analysis for the partition function had begun with the work of Hardy
and Ramanujan [76] in 1918 that reads:

p(n) ∼ 1

4n
√

3
eπ
√

2n/3 as n→∞. (7.8)

Rademacher [123] improved the work of Hardy and Ramanujan by providing a conver-
gent series for p(n) and Lehmer [98] estimated the remainder term of the convergent
series for p(n). The Hardy-Ramanujan-Rademacher formula states that

p(n) =

√
12

24n− 1

N∑
k=1

Ak(n)√
k

[(
1− k

µ(n)

)
eµ(n)/k +

(
1 +

k

µ(n)

)
e−µ(n)/k

]
+R2(n,N),

(7.9)
where

µ(n) =
π

6

√
24n− 1, Ak(n) =

∑
h mod k
(h,k)=1

e−2πinh/k+πis(h,k)

with

s(h, k) =
k−1∑
µ=1

(
µ

k
−
⌊µ
k

⌋
− 1

2

)(
hµ

k
−
⌊hµ
k

⌋
− 1

2

)
,

and

|R2(n,N)| < π2N−2/3

√
3

[(
N

µ(n)

)3

sinh
µ(n)

N
+

1

6
−

(
N

µ(n)

)2]
. (7.10)
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After Rademacher’s work on the partition function, numerous research papers have
been written on inequalities for the partition function. Recently Paule, Radu, Schnei-
der and the first author [21] obtained a full asymptotic expansion of p(n) along with
estimations of error bounds. Based on their work, an infinite family of inequalities
for shifted partition function p(n − `) for ` ≥ 0 is given in [16, Theorem 4.5] which
is the key machinery in proving all of the theorems stated below.

Theorem 7.1.6. Define for all k ≥ 1,

M1
k(n) :=

πk√
6n

+
k3

144n

(
−36π2 +

23π2 − 216

k2

)
+

k5

6912
√

6πn3/2
×(

1296π4 +
31104π2 − 2760π4

k2
+

31104− 19872π2 + 1681π4

k4

)
.

Then for all n > 121k4,

eπ
√

2n/3

4n
√

3

(
M1

k(n) +
E1
L(k)

n2

)
< Mk(n) <

eπ
√

2n/3

4n
√

3

(
M1

k(n) +
E1
U(k)

n2

)
. (7.11)

Explicit expressions for E1
L(k) and E1

U(k) are given in (7.31) and (7.34) respectively
for k odd and even.

Corollary 7.1.7. For k ≥ 1 and n > 121k4, as n→∞,

Mk(n) ∼ πeπ
√

2n/3

12
√

2n3/2
k +

eπ
√

2n/3

576
√

3n2
k3
(23π2 − 216

k2
− 36π2

)
. (7.12)

Remark 7.1.8. Rewriting the asymptotic expansion (7.12) of Mk(n) in the following
way:

Mk(n) ∼ πeπ
√

2n/3

12
√

2n3/2
k +O

(eπ√2n/3

n2
k3
)

as n→∞,

we observe that the growth of error bound is in indeed the optimal one in comparison
with Theorem 7.1.2.

Remark 7.1.9. From the lower bound in (7.11), one can retrieve positivity of Mk(n)

for n > f1(k) with minimal f1(k) such that M1
k(n) +

E1
L(k)

n2
> 0 holds for all n >

f1(k).
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Theorem 7.1.10. Define for all k ≥ 1,

M2
k(n) :=

πk√
6n

+
k3

144n

(
−48π2 +

35π2 − 216

k2

)
+

k5

6912
√

6πn3/2
×(

2304π4 +
41472π2 − 5472π4

k2
+

31104− 30240π2 + 3385π4

k4

)
.

Then for all n > 169k4,

eπ
√

2n/3

4n
√

3

(
M2

k(n) +
E2
L(k)

n2

)
< M̃k(n) <

eπ
√

2n/3

4n
√

3

(
M2

k(n) +
E2
U(k)

n2

)
. (7.13)

Explicit expressions for E2
L(k) and E2

U(k) are given in (7.46) and (7.49) respectively
for k odd and even.

Corollary 7.1.11. For k ≥ 1 and n > 169k4, as n→∞,

M̃k(n) ∼ πeπ
√

2n/3

12
√

2n3/2
k +

eπ
√

2n/3

576
√

3n2
k3
(35π2 − 216

k2
− 48π2

)
. (7.14)

Remark 7.1.12. Similar to Remark 7.1.16, from the lower bound in (7.13), one can

prove positivity of M̃k(n) for n > f2(k) such that M2
k(n) +

E2
L(k)

n2
> 0 holds for all

n > f2(k).

Theorem 7.1.13. Define for all k ≥ 1,

M3
k(n) :=M1

k(n)−M2
k(n)

=
k3 − k

12n
− k5

6912
√

6πn3/2

(
1008π4 +

10368π2 − 2712π4

k2
+
−10368π2 + 1704π4

k4

)
.

Then for all n > 169k4,

eπ
√

2n/3

4n
√

3

(
M3

k(n) +
E1
L(k)− E2

U(k)

n2

)
< Mk(n)− M̃k(n) <

eπ
√

2n/3

4n
√

3

(
M3

k(n) +
E1
U(k)− E2

L(k)

n2

)
.

(7.15)

Proof. Theorems 7.1.6 and 7.1.10 immediately imply (7.15).
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Corollary 7.1.14. For k ≥ 1 and n > 169k4, as n→∞,

Mk(n)− M̃k(n) ∼ eπ
√

2n/3

48
√

3n2
(k3 − k). (7.16)

Remark 7.1.15. Proving Mk(n) > M̃k(n) for n ≥ N(k), it is enough to show that

M3
k(n) +

E1
L(k)− E2

U(k)

n2
> 0 holds for all n ≥ N(k).

Remark 7.1.16. Note that for k = 1, Mk(n)−M̃k(n) = 0 because Mk(n) = M̃k(n) =

p(n)−p(n−1), whereas for all k ≥ 2, (7.15) suggests that Mk(n)−M̃k(n) is positive
for n ≥ N(k). This observation helps us to relax the condition given in Conjecture
7.1.5; i.e., instead of restricting to either n odd or k even, we can assume for all n
and k with n ≥ N(k) that subsumes the excluded case k odd and n even. Still it is
worthwhile to point out that whenever we consider n odd or k even, (7.7) is true for
all n ≥ 1 and k ≥ 1. But when we assume the case k odd and n even, (7.7) doesn’t
hold for all n, k ≥ 1, in other words, it remains to determine the optimal N(k).

By numerical verification with Mathematica, we listed down the values of (N(k))1≤k≤20

such that M2k+1(2n) > M̃2k+1(2n) for all n ≥ N(k).

k 1 2 3 4 5 6 7 8 9 10

N(k) 11 28 54 88 129 179 237 303 376 458

k 11 12 13 14 15 16 17 18 19 20

N(k) 548 646 752 866 988 1118 1256 1402 1558 1719

Based on the above data, a rough estimation predicts that as k become larger,

N(k) ≈
⌊
4k2 + 7k −

√
k log k

⌋
−
⌊k

3

⌋
:= Nc(k).

Table of Nc(k) is as follows:

k 1 2 3 4 5 6 7 8 9 10

Nc(k) 11 29 54 88 130 179 237 304 377 459
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k 11 12 13 14 15 16 17 18 19 20

Nc(k) 550 647 753 868 989 1119 1258 1403 1558 1720

Extending the assumption of Conjecture 7.1.5, we propose the following question:

Problem 7.1.17. For all k ≥ 1 and n ≥ Nc(k), does the following inequality

M2k+1(2n) > M̃2k+1(2n) (7.17)

hold?

The rest of the chapter is organized as follows. In Section 7.2, we give all the
necessary definitions and inequalities for p(n − `) for all ` ≥ 0 (see Theorem 7.2.5
below) so as to ease to follow the later section. Section 7.3 presents the proofs of
Theorems 7.1.6 and 7.1.10.

7.2 Preliminaries

First, we shall recall a few definitions from [16] which will be useful in the estimations
worked out in Section 7.3.

Definition 7.2.1. Following [16, Theorem 3.2], for k ∈ Z≥2, we define

ĝ(k) :=
1

24

(
36

π2
· ν(k)2 + 1

)
, (7.18)

where ν(k) := 2 log 6 + (2 log 2)k + 2k log k + 2k log log k +
5k log log k

log k
.

Definition 7.2.2. [16, Definition 3.42] For all k ≥ 1 and ` ≥ 0, define

n0(k, `) = max
k≥1,`≥0

{
(24`+ 1)2

16
,
(k + 3)(24`+ 1)

24

}
.

Definition 7.2.3. [16, Equation (3.45)] For all ` ≥ 0 and t ≥ 0,

g(t, `) =
(1 + 24`)t

(−4
√

6)t

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k 1

(1 + 24`)k
. (7.19)
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Definition 7.2.4. [16, Definition 4.4] Let g(t, `) be as in (7.2.1). If w ∈ Z≥1 with
dw/2e ≥ 1, define

Ln(w, `) :=
w−1∑
t=0

g(t, `)
( 1√

n

)t
+
L(w, `)√

n
w and Un(w, `) :=

w−1∑
t=0

g(t, `)
( 1√

n

)t
+
U(w, `)√

n
w .

The explicit expressions for L(w, `) and U(w, `) are given in [16, Definition 4.1].

Theorem 7.2.5. [16, Theorem 4.5] For w ∈ Z≥1 with dw/2e ≥ 1 and n > max{ĝ(w)+
`, n0(w, `)}, then

eπ
√

2n/3

4n
√

3
Ln(w, `) < p(n− `) < eπ

√
2n/3

4n
√

3
Un(w, `). (7.20)

7.3 Proof of Theorems 7.1.6-7.1.10

Proof of Theorem 7.1.6: Let k ≥ 1 be an odd integer. Following (7.2), we write

M2k+1(n) = M e
2k+1(n)−M o

2k+1(n), (7.21)

where

M e
2k+1(n) =

k∑
j=0

(
p(n− j(6j + 1))− p(n− j(6j + 5)− 1)

)
and

M o
2k+1(n) =

k−1∑
j=0

(
p(n− (2j + 1)(3j + 2))− p(n− (2j + 1)(3j + 4)− 1)

)
.

Applying Theorem 7.2.5 with w = 4, we obtain

M e
2k+1(n) <

eπ
√

2n/3

4n
√

3

(
k∑
j=0

3∑
t=0

(
g(t, j(6j+1))−g(t, j(6j+5)+1)

) 1
√
n
t +

U e
1 (2k + 1)

n2

)
(7.22)

and

M e
2k+1(n) >

eπ
√

2n/3

4n
√

3

(
k∑
j=0

3∑
t=0

(
g(t, j(6j+1))−g(t, j(6j+5)+1)

) 1
√
n
t +

Le1(2k + 1)

n2

)
,

(7.23)
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with

Le1(2k + 1) =
k∑
j=0

L
(
4, j(6j + 1)

)
− U

(
4, j(6j + 5) + 1

)
(7.24)

and

U e
1 (2k + 1) =

k∑
j=0

U
(
4, j(6j + 1)

)
− L

(
4, j(6j + 5) + 1

)
(7.25)

Analogously, for M o
2k+1(n), we get

M o
2k+1(n) <

eπ
√

2n/3

4n
√

3
×(

k−1∑
j=0

3∑
t=0

(
g(t, (2j + 1)(3j + 2))− g(t, (2j + 1)(3j + 4) + 1)

) 1
√
n
t +

U o
1 (2k + 1)

n2

)
(7.26)

and

M o
2k+1(n) >

eπ
√

2n/3

4n
√

3
×(

k−1∑
j=0

3∑
t=0

(
g(t, (2j + 1)(3j + 2))− g(t, (2j + 1)(3j + 4) + 1)

) 1
√
n
t +

Lo1(2k + 1)

n2

)
,

(7.27)

with

Lo1(2k + 1) =
k−1∑
j=0

L
(
4, (2j + 1)(3j + 2)

)
− U

(
4, (2j + 1)(3j + 4) + 1

)
(7.28)

and

U o
1 (2k + 1) =

k−1∑
j=0

U
(
4, (2j + 1)(3j + 2)

)
− L

(
4, (2j + 1)(3j + 4) + 1

)
. (7.29)
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Combining (7.22)-(7.29) and applying to (7.21), if follows that

E1
L(2k + 1)

n2
<

M2k+1(n)(
eπ
√

2n/3/4n
√

3
)−

2k∑
j=0

(−1)j
3∑
t=0

g(t, j(3j + 1)/2)− g(t, j(3j + 5)/2 + 1)
√
n
t <

E1
U(2k + 1)

n2
,

(7.30)

with

E1
L(2k+1) = Le1(2k+1)−U o

1 (2k+1) and E1
U(2k+1) = U e

1 (2k+1)−Lo1(2k+1). (7.31)

Next assume k ≥ 1 is even. We split M2k(n) as follows:

M2k(n) = −M e
2k(n) +M o

2k(n), (7.32)

with

M e
2k(n) =

k−1∑
j=0

(
p(n− j(6j + 1))− p(n− j(6j + 5)− 1)

)
and

M o
2k(n) =

k−1∑
j=0

(
p(n− (2j + 1)(3j + 2))− p(n− (2j + 1)(3j + 4)− 1)

)
.

Applying (7.20) separately to M e
2k(n) and M o

2k(n), we get

E1
L(2k)

n2
<

M2k(n)(
eπ
√

2n/3/4n
√

3
)+

2k−1∑
j=0

(−1)j
3∑
t=0

g(t, j(3j + 1)/2)− g(t, j(3j + 5)/2 + 1)
√
n
t <

E1
U(2k)

n2
,

(7.33)

where
E1
L(2k) = Lo1(2k)− U e

1 (2k) and E1
U(2k) = U o

1 (2k)− Le1(2k), (7.34)
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with

Le1(2k) =
k−1∑
j=0

L(4, j(6j + 1))− U(4, j(6j + 5) + 1)

U e
1 (2k) =

k−1∑
j=0

U(4, j(6j + 1))− L(4, j(6j + 5) + 1)

Lo1(2k) =
k−1∑
j=0

L(4, (2j + 1)(3j + 2))− U(4, (2j + 1)(3j + 4) + 1)

U o
1 (2k) =

k−1∑
j=0

U(4, (2j + 1)(3j + 2))− L(4, (2j + 1)(3j + 4) + 1).

Define n1(k) := max
{
ĝ(4) + (k − 1)(3k + 5)/2 + 1, n0

(
4, (k − 1)(3k + 5)/2 + 1

)}
.

Putting (7.30) and (7.33) together, for all n > n1(k), it follows that

E1
L(k)

n2
<

Mk(n)(
eπ
√

2n/3/4n
√

3
)−

(−1)k−1

k−1∑
j=0

(−1)j
3∑
t=0

g(t, j(3j + 1)/2)− g(t, j(3j + 5)/2 + 1)
√
n
t <

E1
U(k)

n2
.

(7.35)

Following (7.19), we get

(−1)k−1

k−1∑
j=0

(−1)j
3∑
t=0

g(t, j(3j + 1)/2)− g(t, j(3j + 5)/2 + 1)
√
n
t

=
πk√
6n

+
k3

144n

(
−36π2 +

23π2 − 216

k2

)
+

k5

6912
√

6πn3/2
×(

1296π4 +
31104π2 − 2760π4

k2
+

31104− 19872π2 + 1681π4

k4

)
=M1

k(n).

(7.36)

Finally, it is easy to verify that for all k ≥ 1,

n1(k) ≤ 121k4.
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This finishes the proof of Theorem 7.1.6.
Proof of Theorem 7.1.10: Assume k ≥ 1 is odd. Following (7.6), rewrite

M̃2k+1(n) = M̃ e
2k+1(n)− M̃ o

2k+1(n), (7.37)

where

M̃ e
2k+1(n) =

k∑
j=0

(
p(n− 2j(4j + 1))− p(n− (2j + 1)(4j + 1))

)
and

M̃ o
2k+1(n) =

k−1∑
j=0

(
p(n− (2j + 1)(4j + 3))− p(n− (2j + 2)(4j + 3))

)
.

Applying Theorem 7.2.5 with w = 4, it follows that

M̃ e
2k+1(n) <

eπ
√

2n/3

4n
√

3

(
k∑
j=0

3∑
t=0

(
g(t, 2j(4j+1))−g(t, (2j+1)(4j+1))

) 1
√
n
t+
U e

2 (2k + 1)

n2

)
(7.38)

and

M̃ e
2k+1(n) >

eπ
√

2n/3

4n
√

3

(
k∑
j=0

3∑
t=0

(
g(t, 2j(4j+1))−g(t, (2j+1)(4j+1))

) 1
√
n
t+
Le2(2k + 1)

n2

)
,

(7.39)
with

Le2(2k + 1) =
k∑
j=0

L
(
4, 2j(4j + 1)

)
− U

(
4, (2j + 1)(4j + 1)

)
(7.40)

and

U e
2 (2k + 1) =

k∑
j=0

U
(
4, 2j(4j + 1)

)
− L

(
4, (2j + 1)(4j + 1)

)
(7.41)

Similarly for M̃ o
2k+1(n), we obtain

M̃ o
2k+1(n) <

eπ
√

2n/3

4n
√

3
×(

k−1∑
j=0

3∑
t=0

(
g(t, (2j + 1)(4j + 3))− g(t, (2j + 2)(4j + 3))

) 1
√
n
t +

U o
2 (2k + 1)

n2

)
(7.42)
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and

M̃ o
2k+1(n) >

eπ
√

2n/3

4n
√

3
×(

k−1∑
j=0

3∑
t=0

(
g(t, (2j + 1)(4j + 3))− g(t, (2j + 2)(4j + 3))

) 1
√
n
t +

Lo2(2k + 1)

n2

)
,

with

Lo2(2k + 1) =
k−1∑
j=0

L
(
4, (2j + 1)(4j + 3)

)
− U

(
4, (2j + 2)(4j + 3)

)
(7.43)

and

U o
2 (2k + 1) =

k−1∑
j=0

U
(
4, (2j + 1)(4j + 3)

)
− L

(
4, (2j + 2)(4j + 3)

)
. (7.44)

Applying (7.38)-(7.44) to (7.37), if follows that

E2
L(2k + 1)

n2
<

M̃2k+1(n)(
eπ
√

2n/3/4n
√

3
)−

2k∑
j=0

(−1)j
3∑
t=0

g(t, j(2j + 1))− g(t, (j + 1)(2j + 1))
√
n
t <

E2
U(2k + 1)

n2
,

(7.45)

with

E2
L(2k+1) = Le2(2k+1)−U o

2 (2k+1) and E2
U(2k+1) = U e

2 (2k+1)−Lo2(2k+1). (7.46)

Now assume k ≥ 1 is even. Split M̃2k(n) as follows:

M̃2k(n) = −M̃ e
2k(n) + M̃ o

2k(n), (7.47)

with

M̃ e
2k(n) =

k−1∑
j=0

(
p(n− 2j(4j + 1))− p(n− (2j + 1)(4j + 1))

)
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and

M̃ o
2k(n) =

k−1∑
j=0

(
p(n− (2j + 1)(4j + 3))− p(n− (2j + 2)(4j + 3))

)
.

Applying (7.20) to M̃ e
2k(n) and M̃ o

2k(n), it follows that

E2
L(2k)

n2
<

M̃2k(n)(
eπ
√

2n/3/4n
√

3
)+

2k−1∑
j=0

(−1)j
3∑
t=0

g(t, j(2j + 1))− g(t, (j + 1)(2j + 1))
√
n
t <

E2
U(2k)

n2
,

(7.48)

where
E2
L(2k) = Lo2(2k)− U e

2 (2k) and E2
U(2k) = U o

2 (2k)− Le2(2k), (7.49)

with

Le2(2k) =
k−1∑
j=0

L(4, 2j(4j + 1))− U(4, (2j + 1)(4j + 1))

U e
2 (2k) =

k−1∑
j=0

U(4, 2j(4j + 1))− L(4, (2j + 1)(4j + 1))

Lo2(2k) =
k−1∑
j=0

L(4, (2j + 1)(4j + 3))− U(4, (2j + 2)(4j + 3))

U o
2 (2k) =

k−1∑
j=0

U(4, (2j + 1)(4j + 3))− L(4, (2j + 2)(4j + 3)).

Define n2(k) := max
{
ĝ(4) + k(2k − 1), n0

(
4, k(2k − 1)

)}
. Combining (7.45) and

(7.48), for all n > n2(k), it follows that

E2
L(k)

n2
<

M̃k(n)(
eπ
√

2n/3/4n
√

3
)−

(−1)k−1

k−1∑
j=0

(−1)j
3∑
t=0

g(t, j(2j + 1))− g(t, (j + 1)(2j + 1))
√
n
t <

E2
U(k)

n2
.

(7.50)
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Following (7.19), we have

(−1)k−1

k−1∑
j=0

(−1)j
3∑
t=0

g(t, j(2j + 1))− g(t, (j + 1)(2j + 1))
√
n
t

=
πk√
6n

+
k3

144n

(
−48π2 +

35π2 − 216

k2

)
+

k5

6912
√

6πn3/2
×(

2304π4 +
41472π2 − 5472π4

k2
+

31104− 30240π2 + 3385π4

k4

)
=M2

k(n).

(7.51)

We conclude the proof of Theorem 7.1.10 by verifying that for all k ≥ 1, n2(k) ≤
169k4.

7.4 Conclusion

We conclude this chapter by noting down a few possible follow ups.

1. Extending the inequality (7.35) (resp. (7.50)) by letting w → ∞, we obtain

the full asymptotic expansion of Mk(n) (resp. of M̃k(n)).

2. We observe that all of the aforementioned inequalities with regard to the alter-
nating sums for the partition function can be considered under the following
framework:

T∑
i=1

p(n+ si) ≥
T∑
i=1

p(n+ ri),

where si, ri are non-positive integers for all 1 ≤ i ≤ T . In order to prove such
inequalities, it is enough to choose the appropriate w in Theorem 7.2.5 and
carry out similar work as done in Section 7.3. For the choice of w, it suffices to

take the minimal w0 ≥ 1 such that
T∑
i=1

g(w0, si) − g(w0, ri) 6= 0, where g(t, `)

as in (7.19).

3. Wang and Yee [146, Theorem 1.2] considered the sum representation of (q; q)2
∞

due to Hecke and showed positivity of the following alternating sum in the
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2-colored partition function (denoted by pp(n)):

(−1)m
m∑
n=0

n∑
j=−n

(−1)j
(
pp(Nj − n(2n+ 1))− pp(Nj − (n+ 1)(2n+ 1))

)
, (7.52)

where Nj = N + j(3j + 1)/2. Recently Bringmann et. al. [32] studied the
asymptotic expansion of k-colored partition function. Setting k = 2, one has
the asymptotic expansion for pp(n) and working out to derive the infinite family
of inequalities for pp(n− `) as in Theorem 7.2.5 which in turn finally show the
asymptotic growth of (7.52). Whereas for k = 3, similar synthesis for the
3-colored partitions can be done to derive the asymptotic growth of

Jk(n) = (−1)k
k∑
j=0

(−1)j(2j + 1)t
(
n− j(j + 1)/2

)
,

given in [10].
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Chapter 8

Error bounds for the modified
Bessel function of first kind of
non-negative order

Let Iν(x) be the modified Bessel function of order ν with real argument x. We
present explicit error bounds for the asymptotic expansion of Iν(x) with x ≥ 1. Two
cases, ν an integer and ν a half-integer are considered separately. In addition, we
present a short discussion on the error analysis for Iν(x) where ν is any non-negative
real number.

8.1 Asymptotic expansion of Iν(x) and scope of its

applications

Consider Bessel’s differential equation over the complex domain,

z2y′′ + zy′ + (z2 − ν2)y = 0, (8.1)

where ν is an arbitrary complex parameter. The solutions of this equation are termed
as Bessel functions. In 1824, F. W. Bessel [24, 25] initiated a systematic rigorous
analysis of such functions which was the starting point of a flourishing development
along with a multitude of applications in connection with problems in number theory,
integral transforms, differential equations, etc. The main object of this chapter is
Iν(z), a solution of

z2y′′ + zy′ − (z2 + ν2)y = 0, (8.2)
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the so-called modified version of (8.1), with series representation

Iν(z) =
∞∑
m=0

(1
2
z)ν+2m

m!Γ(ν +m+ 1)
. (8.3)

In 1854 Kirchhoff [86] established an asymptotic expansion of Iν(z): for fixed ν ∈ C,

Iν(z) ∼ ez√
2πz

(
1− 4ν2 − 1

8z
+

(4ν2 − 1)(4ν2 − 9)

2!(8z)2
− . . .

)
, | arg z| < π

2
.

Estimates for the error terms of asymptotic expansions of Bessel functions have
been considered by Schläfli [126], Weber [151], Watson [150, p. 209-210], Meijer
[107], Olver [116], Nemes [110], to name a few. For a more extensive study on the
literature of the Bessel functions, we refer to [150].

This chapter focuses on deriving a family of inequalities for Iν(x) with ν a non-
negative integer or a half-integer, and x a real number ≥ 1. Why it is necessary to
get such inequalities for Iν(x)? We have already mentioned that the theory of Bessel
functions often sprout out in problems related to number theory. For example, Iν(x)
with non-negative integral or half-integral order ν appears in Hardy-Ramanujan-
Rademacher type series expansions for coefficients of certain classes of Dedekind eta
quotients; see for example [41, Thm. 1.1] or [138, Thm. 1.1]. These coefficients
are quite often entangled with combinatorial features that emerge from the question
whether a real polynomial associated with such sequences has roots all real. For
example, consider the Jensen polynomial of degree d and shift n for a sequence
{α(n)}n≥0 of real numbers, defined as

Jd,nα (x) =
d∑
j=0

(
d

j

)
α(n+ j)xj.

Now, to prove log-concavity (resp. higher order Turán inequalities) of α(n), it is
equivalent to prove that J2,n

α (x) (resp. Jd,nα (x) for d ≥ 3) has roots all real for all
n > N(d) where N(d) is a positive real number depending on the degree d.

To answer these problems for a sequence, say af (n), arising from the Fourier
expansion of a periodic meromorphic function, say a Dedekind eta quotient f(q),
we would like to estimate af (n) by computing a precise estimation of the associated
Hardy-Ramanujan-Rademacher type series, say Sf . Now, in order to provide such
a precise estimate for the main term obtained after truncating the series Sf to a
finite number of terms, inequalities for Iν(f)(x) are needed, where the index ν(f)
is depending on f . For instance, Griffin, Ono, Rolen and Zagier [69] proved the
following theorem.
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Theorem 8.1.1. [69, eq. 9] Let {af (n)}n≥0 be a sequence of positive real numbers
arising from the Fourier expansion of a periodic meromorphic function f . Suppose

af (n) = Afn
k−1
2 Ik−1(4π

√
mn) +O

(
nCe2π

√
mn
)

as n → ∞ for some non-zero real constants Af ,m, k, and C, where Iν(x) is the
modified Bessel function of the first kind of order ν. Then for d ≥ 1, the Jensen
polynomial Jd,naf (x) associated to af (n) has only real roots for all sufficiently large n.

A concrete example with regard to log-concavity is this. In order to prove log-
concavity of the colored partition function pk(n), conjectured by Chern, Fu and Tang
[43, Conjecture 5.3], Bringmann et. al. estimated the error term by truncation of
the asymptotic expansion of Iν(x) at N = 3, which plays a key role in their proof of
the conjecture [32, Conjecture 1]:

Theorem 8.1.2. [32, Lemma 2.2 (4)] For ν ≥ 2 and x ≥ 1
120

(ν + 7
2
)6,∣∣∣∣∣Iν(x)

√
2πx

ex
−1+

4ν2 − 1

8x
−(4ν2 − 1)(4ν2 − 9)

128x2
+

(4ν2 − 1)(4ν2 − 9)(4ν2 − 25)

3072x3

∣∣∣∣∣ < 31ν8

6x4
.

(8.4)

Theorems 8.1.1 and 8.1.2 motivated us to study the inequalities for Iν(x) by
extending the truncation point to any positive integer N and estimating an error
bound.

This chapter is organized in the following way. First we will give some basic
notations and definitions which we use throughout the chapter. Section 8.2 presents
lemmas, useful for the proofs given in later sections, followed by a brief illustration
of the key features they possess. In Sections 8.3 and 8.4 we will discuss the method
devised. Section 8.3 (resp. Section 8.4) presents the estimation of the error term of
the asymptotic expansion of Iν(x) with ν ∈ Z≥0 (resp. ν ∈ 1

2
+ Z≥0), and derives

Theorem 8.3.9 with the Corollary 8.3.10 (resp. Theorem 8.4.6). Section 8.5 is devoted
to the study of the error analysis for any non-negative real index ν. The Appendix,
Section 8.6, is divided into two subsections: Subsection 8.6.1 presents the proofs of
three lemmas (from Section 8.2) and in Subsection 8.6.2 a Mathematica computation
is presented which is needed for the completion of the proof of Corollary 8.3.10.

Let ak denote the falling factorial,

ak =

{
a(a− 1) . . . (a− k + 1), if k ∈ Z>0

1, if k = 0
,
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and the binomial coefficient is defined by
(
a
m

)
= am

m!
. In this framework, we restrict

ourselves to a ∈ R. Similarly, the rising factorial is defined by

ak =

{
a(a+ 1) . . . (a+ k − 1), if k ∈ Z>0

1, if k = 0
;

nevertheless, we mostly prefer to use the classical notation (a)k = ak. For z ∈ C
with Re(z) > 0, the gamma function is defined by

Γ(z) =

∫ ∞
0

e−ttz−1 dt. (8.5)

For Re(z) ≤ 0, Γ(z) is defined by analytic continuation. It is a meromorphic function
with no zeros, and with simple poles of residue (−1)n/n! at z = −n when n ∈ Z≥0.
Note that (a)n = Γ(a + n)/Γ(a) for a /∈ Z≤0. For a brief survey on the gamma
function, readers may consult [2, Ch. 6.1], [115, Ch. 2.1] and [119]. The incomplete
gamma functions γ(a, z) and Γ(a, z) are defined by

γ(a, z) =

∫ z

0

e−tta−1 dt, Re(a) > 0, (8.6)

and

Γ(a, z) =

∫ ∞
z

e−tta−1 dt; (8.7)

moreover,
γ(a, z) + Γ(a, z) = Γ(a), a /∈ Z≤0. (8.8)

For our purpose, we need to consider Iν(x) only for ν ∈ R≥2 and x ∈ R≥1. To this
end, we shall use the following representation of Iν(x) [150, Ch. VII, 7.25],

Iν(x) =
(x

2
)ν

Γ(ν + 1
2
)Γ(1

2
)

∫ π

0

ex cos θ sin2ν θ dθ. (8.9)

8.2 Preliminary lemmas

This section presents all the preliminary facts needed for the proofs of the lemmas
stated in Sections 8.3, 8.4 and 8.5. Lemma 8.2.1 helps us to estimate the integrand
in γ(a, x) and Γ(a, x) for positive real numbers a and x. Using Lemmas 8.2.2 and

8.2.3 identifies the binomial coefficient
(
ν− 1

2
m

)
with the standard binomial coefficients
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and as a consequence, we obtain an upper bound of the absolute value of (−1)m
(
ν− 1

2
m

)
in Lemma 8.2.4. The proofs of Lemmas 8.2.1 to 8.2.4 are presented in Subsection
8.6.1. Lemmas 8.2.6 and 8.2.7 illustrate the alternation of sign of the sums (8.14)
and (8.15) depending on the parity of N for ν ∈ Z≥0. Similar results are outlined in
Lemmas 8.2.8 and 8.2.9 for ν ∈ 1

2
+ Z≥0.

Lemma 8.2.1. For all (x, y) ∈ R>0 × R>0,

e−x xy <
1√
2π

Γ(y)
√
y. (8.10)

Lemma 8.2.2. For (ν,m) ∈ Z≥0 × Z≥0,

(
ν − 1

2

m

)
=


(−1)m−ν

4m
(2ν
ν )(2m−2ν

m−ν )
(mν )

, if m > ν

1
4m

(2ν
ν )( νm)

(2ν−2m
ν−m )

, if m ≤ ν
.

Lemma 8.2.3. For ν ∈ R and (k,N) ∈ Z≥0 × Z≥0,

N∑
m=k

(−1)m
(
ν − 1

2

m

)(
m

k

)
= 2 (−1)N+1(N + 1)

(
ν − 1

2

N + 1

)
1

2k − 2ν + 1

(
N

k

)
. (8.11)

Lemma 8.2.4. For (ν,m) ∈ Z≥1 × Z≥1,∣∣∣∣∣(−1)m
(
ν − 1

2

m

)∣∣∣∣∣ ≤


1

π
√
ν(m−ν)

1

(mν )
, if m > ν

2√
π

(
ν
m

)
, if m ≤ ν

.

Lemma 8.2.5. For α ∈ R>1 and (ν,N) ∈ R≥0 × Z≥0,

N∑
m=0

(
ν − 1

2

m

)
(−α)m = 2 (−1)N+1(N + 1)

(
ν − 1

2

N + 1

) N∑
m=0

(
N

m

)
(α− 1)m

2m− 2ν + 1
. (8.12)

Proof. For β := α− 1,

N∑
m=0

(
ν − 1

2

m

)
(−α)m =

N∑
m=0

m∑
k=0

(−1)m
(
ν − 1

2

m

)(
m

k

)
βk

=
N∑
k=0

N∑
m=k

(−1)m
(
ν − 1

2

m

)(
m

k

)
βk. (8.13)

From (8.13), using (8.11), the statement follows.
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Lemma 8.2.6. For all α ∈ R>1 and (ν,N) ∈ Z≥2 × Z≥0 with ν ≥ N + 1,

(−1)N
N∑
m=0

(
ν − 1

2

m

)
(−α)m > 0. (8.14)

Proof. Multiplying (−1)N on both sides of (8.12) and the fact that ν ≥ N + 1
immediately implies (8.14).

Lemma 8.2.7. For all α ∈ (0, 1] and (ν,N) ∈ Z≥2 × Z≥0 with ν ≥ N + 1,

(−1)N
ν∑

m=N+1

(
ν − 1

2

m

)
(−α)m < 0. (8.15)

Proof. Let

S(ν) := (−1)N
ν∑

m=N+1

(
ν − 1

2

m

)
(−α)m < 0.

We prove (8.15) by induction on ν ≥ N + 1. For ν = N + 1,

S(N + 1) = −αN+1

(
N + 1

2

N + 1

)
< 0(

by Lemma 8.2.2 with m = ν = N + 1 and

(
N + 1

2

N + 1

)
> 0

)
.

Assuming S(T ) < 0 for T ≥ N + 1, we proceed to the case ν = T + 1. Using the
Paule-Schorn [118] package fastZeil1, after applying Lemma 8.2.2, we obtain

S(T + 1) = (1− α)S(T )− αN+1

(
T − 1

2

N

)
− (−1)T+N+1αT+1 4−T

2T + 2

(
2T

T

)
≤ −αN+1

(
T − 1

2

N

)
− (−1)T+N+1αT+1 4−T

2T + 2

(
2T

T

)
. (8.16)

To see that the right hand side of (8.16) is strictly less than 0, we consider two
cases depending on parity of T and N . If T and N have opposite parity; i.e.,
T +N ≡ 1(mod 2), then S(T + 1) < 0, since

S(T + 1) ≤ −αN+1

(
T − 1

2

N

)
− αT+1 4−T

2T + 2

(
2T

T

)
< 0.

1The package is available at https://combinatorics.risc.jku.at/software.
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Continuing with (8.16) in the case that T ≡ N(mod 2), it follows that

S(T + 1) ≤ −αN+1

((
T − 1

2

N

)
− 1

2T + 2

1

4T

(
2T

T

))
(as, a ∈ (0, 1] and T > N)

= −αN+1

(
1

4N

(
2T
T

)(
T
N

)(
2T−2N
T−N

) − 1

2T + 2

1

4T

(
2T

T

))
(by Lemma 8.2.2 with (m, ν) 7→ (N, T ))

= −αN+1 1

4T

(
2T

T

)(
4T−N(
2T−2N
T−N

)(T
N

)
− 1

2T + 2

)

≤ −αN+1 1

4T

(
2T

T

)((
T

N

)√
π(T −N)− 1

2T + 2

)
(by (8.91) with n 7→ T −N)

< 0 (since T > N).

This finishes the proof of (8.15).

Lemma 8.2.8. For all α ∈ R>1 and (ν,N) ∈ Z≥2 × Z≥0 with ν ≥ N ,

(−1)N
N∑
m=0

(
ν

m

)
(−α)m > 0. (8.17)

Proof. For ν = N ,

(−1)N
N∑
m=0

(
ν

m

)
(−α)m = (α− 1)N > 0;

whereas for ν > N , we apply Lemma (8.2.6) with the substitution ν 7→ ν + 1
2
.

Lemma 8.2.9. For all α ∈ (0, 1] and (ν,N) ∈ Z≥2 × Z≥0 with ν ≥ N ,

(−1)N
ν∑

m=N+1

(
ν

m

)
(−α)m < 0. (8.18)

Proof. Analogous to the proof of Lemma 8.2.7.
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The asymptotic expansion for Iν(x) is well documented in the literature; see, for
example, [2] or [27, p. 10.40.1]. Still, we recall it in brevity. Namely, in order to
estimate the error term E(ν,N, x) in Lemma 8.3.1, the knowledge of both (8.19) and
the variant (8.20) is required.

Lemma 8.2.10. ([150, Chapter VII, 7.25]) For x ∈ R≥1 and ν ∈ R>− 1
2
,

√
2πx

ex
Iν(x) =

∞∑
m=0

(−1)m
(
ν− 1

2
m

)
(2x)mΓ(ν + 1

2
)

∫ 2x

0

e−ttν+m− 1
2 dt. (8.19)

Now from (8.19) we can rephrase to the asymptotic expansion of Iν(x) in the
following way,

√
2πx

ex
Iν(x) =

∞∑
m=0

(−1)m
(
ν− 1

2
m

)
(2x)mΓ(ν + 1

2
)

(∫ ∞
0

e−ttν+m− 1
2 dt−

∫ ∞
2x

e−ttν+m− 1
2 dt

)

=
∞∑
m=0

(−1)m
(
ν− 1

2
m

)(
ν + 1

2

)
m

(2x)m
−
∞∑
m=0

(−1)m
(
ν− 1

2
m

)
(2x)mΓ(ν + 1

2
)

∫ ∞
2x

e−ttν+m− 1
2 dt

∼
x→∞

∞∑
m=0

(−1)m

(
ν− 1

2
m

)(
ν + 1

2

)
m

(2x)m
.

Summarizing,

Iν(x) ∼
x→∞

ex√
2πx

∞∑
m=0

(−1)mam(ν)

xm
with am(ν) =

(
ν− 1

2
m

)(
ν + 1

2

)
m

2m
. (8.20)

8.3 Inequalities for modified Bessel function of in-

tegral order

In this section, we shall describe how one can obtain an infinite family of inequalities
for Iν(x), ν ∈ Z≥0, as stated in Theorem (8.3.9). We first split the infinite series
on the right hand side of (8.19). This results in the identity (8.22) where the left
hand side presents the remainder term obtained from truncation of the asymptotic
series expansion (8.20) of

√
2πx
ex

Iν(x) after extracting its partial sum. In Lemma
8.3.1, we further dissect the remainder term E(ν,N, x) depending on ν ≥ N + 1 or
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ν ≤ N . Lemmas 8.3.2-8.3.5 (resp. Lemmas 8.3.6-8.3.8) deal with the error analysis
for ν ≥ N + 1 (resp. for ν ≤ N).

For ν ≥ N + 1, using Lemmas 8.2.6 and 8.2.7, we obtain upper bounds for
the absolute value of Eν,N,1(x) and Eν

N,2(x). In order to compute an upper bound
of |Eν

N,3(x)|, we first estimate a bound for |ψνm(t;x)| using Lemma 8.2.1 and then
estimate the sum by Lemma 8.2.4. Combining the upper bounds from Lemmas
8.3.2-8.3.4, we obtain the final bound for |E(ν,N, x)|, as given in Lemma 8.3.5.

On the other hand, for ν ≤ N , the remainder term E(ν,N, x) is divided into two
components, denoted by Eν,N,1(x) and EN

ν,2(x). Here we carry out a different method
to obtain an upper bound for |Eν,N,1(x)|, since φνm(t;x) for ν ≤ N is different from
the case ν ≥ N + 1, see Lemma 8.2.2. Using Lemma 8.2.5, we shall finally get an
upper bound for |Eν,N,1(x)|, as given in Lemma 8.3.6. Analogous to the computation
for upper bound of |Eν

N,3(x)|, a similar estimation has been done for |EN
ν,2(x)| to

obtain (8.54). Lemmas 8.3.6 and 8.3.7 imply Lemma 8.3.8.
Finally, we state the main result of this chapter, Theorem 8.3.9, as an immediate

consequence of Lemmas 8.3.5 and 8.3.8. From Theorem 8.3.9, we get an analogous
result to [32, Lemma 2.2 (4)] for N = 3 and ν ∈ Z≥0, as documented in Corollary
8.3.10.
In this subsection,

am(ν) =

(
ν− 1

2
m

)(
ν + 1

2

)
m

2m
, (A)

as in (8.20).
Define

φνm(t;x) =
(−1)m

(
ν− 1

2
m

)
(2x)mΓ(ν + 1

2
)

∫ ∞
2x

e−ttν+m− 1
2 dt, (PHI)

ψνm(t;x) =
(−1)m

(
ν− 1

2
m

)
(2x)mΓ(ν + 1

2
)

∫ 2x

0

e−ttν+m− 1
2 dt, (PSI)

Eν,N,1(x) = −
N∑
m=0

φνm(t;x), (E1)

Eν
N,2(x) =

ν∑
m=N+1

ψνm(t;x), (E2)

Eν
N,3(x) =

∞∑
m=ν+1

ψνm(t;x), (E3)
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and

EN
ν,2(x) =

∞∑
m=N+1

ψνm(t;x). (E0)

Lemma 8.3.1. For x ∈ R≥1 and (ν,N) ∈ Z≥0 × Z≥0,
√

2πx

ex
Iν(x)−

N∑
m=0

(−1)mam(ν)

xm
= E(ν,N, x),

with

E(ν,N, x) =

{
Eν,N,1(x) + Eν

N,2(x) + Eν
N,3(x), if ν ≥ N + 1

Eν,N,1(x) + EN
ν,2(x), if ν ≤ N

. (8.21)

Proof. From (8.19) it follows that
√

2πx

ex
Iν(x) =

∞∑
m=0

ψνm(t;x)

=
N∑
m=0

ψνm(t;x) +
∞∑

m=N+1

ψνm(t;x)

=
N∑
m=0

(−1)m
(
ν− 1

2
m

)
(ν + 1

2
)m

(2x)m
−

N∑
m=0

φνm(t;x) +
∞∑

m=N+1

ψνm(t;x).

Therefore
√

2πx

ex
Iν(x)−

N∑
m=0

(−1)mam(ν)

xm
=−

N∑
m=0

φνm(t;x) +
∞∑

m=N+1

ψνm(t;x). (8.22)

We split the right hand side of (8.22) according to ν ≥ N + 1 and ν ≤ N as follows.
For ν ≥ N + 1,
√

2πx

ex
Iν(x)−

N∑
m=0

(−1)mam(ν)

xm
=−

N∑
m=0

φνm(t;x) +
ν∑

m=N+1

ψνm(t;x) +
∞∑

m=ν+1

ψνm(t;x);

(8.23)

whereas, for ν ≤ N ,
√

2πx

ex
Iν(x)−

N∑
m=0

(−1)mam(ν)

xm
=−

N∑
m=0

φνm(t;x) +
∞∑

m=N+1

ψνm(t;x). (8.24)

The relations (8.23) and (8.24) prove (8.21).
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Lemma 8.3.2. For x ∈ R≥1 and (ν,N) ∈ Z≥2 × Z≥1 with ν ≥ N + 1,

|Eν,N,1(x)| <
(
ν− 1

2
N+1

)
Γ(ν + 1

2
)(2x)N+1

Γ(ν +N +
3

2
, 2x), (8.25)

where Γ is the incomplete gamma function from (8.7).

Proof. From Lemma 8.3.1, for all x ∈ R≥1 and (ν,N) ∈ Z≥2 × Z≥1 with ν ≥ N + 1
we have

Eν,N,1(x) = −
N∑
m=0

φνm(t;x) = −
∫ ∞

2x

e−ttν−
1
2

Γ(ν + 1
2
)

N∑
m=0

(
ν − 1

2

m

)(
− t

2x

)m
dt

= −
∫ ∞

2x

e−ttν−
1
2

Γ(ν + 1
2
)

N∑
m=0

(
ν − 1

2

m

)
(−θ)m dt where θ :=

t

2x
. (8.26)

Let N be even. Applying (8.14), we get

−
(
ν − 1

2

N + 1

)
θN+1 < −

N∑
m=0

(
ν − 1

2

m

)
(−θ)m < 0 (by (8.14)) (8.27)

Now from (8.26) and (8.27), by taking the integral, it follows that

− φνN+1(t;x) < −
N∑
m=0

φνm(t;x) < 0. (8.28)

Similarly, for N odd,(
ν − 1

2

N + 1

)
θN+1 > −

N∑
m=0

(
ν − 1

2

m

)
(−θ)m > 0 (by (8.14)). (8.29)

Using (8.26) and (8.29), we have

0 < −
N∑
m=0

φνm(t;x) < φνN+1(t;x). (8.30)

(8.28) and (8.30) together imply (8.25).
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Lemma 8.3.3. For x ∈ R≥1 and (ν,N) ∈ Z≥2 × Z≥1 with ν ≥ N + 1,

|Eν
N,2(x)| <

(
ν− 1

2
N+1

)
Γ(ν + 1

2
)(2x)N+1

γ(ν +N +
3

2
, 2x), (8.31)

where γ is the incomplete gamma function from (8.6).

Proof. For ν ≥ N + 1, from Lemma 8.3.1, it follows that

Eν
N,2(x) =

ν∑
m=N+1

ψνm(t;x) =

∫ 2x

0

e−ttν−
1
2

Γ(ν + 1
2
)

ν∑
m=N+1

(
ν − 1

2

m

)(
− t

2x

)m
dt

=

∫ 2x

0

e−ttν−
1
2

Γ(ν + 1
2
)

ν∑
m=N+1

(
ν − 1

2

m

)
(−θ)mdt where θ :=

t

2x
. (8.32)

For N even,

−
(
ν − 1

2

N + 1

)
θN+1 <

ν∑
m=N+1

(
ν − 1

2

m

)
(−θ)m < 0 (by (8.15)). (8.33)

From (8.32) and (8.33), we have

− ψνN+1(t;x) <
ν∑

m=N+1

ψνm(t;x) < 0. (8.34)

Likewise, for N odd,

0 <
ν∑

m=N+1

(
ν − 1

2

m

)
(−θ)m <

(
ν − 1

2

N + 1

)
θN+1 (by (8.15)), (8.35)

and (8.32) and (8.35) together imply

0 <
ν∑

m=N+1

ψνm(t;x) < ψνN+1(t;x). (8.36)

Applying (8.34) and (8.36) concludes the proof.

Define

Eν
N+1 =

√
2

π

√
(2N + 5/2)(N + 2) (8.37)

and

Eν
N+2 =

1

π

√
2

π

√
ν + 1

ν −N − 1

√
ν +N +

3

2

(√
1

ν −N − 1
−
√

1

ν + 1

)
. (8.38)

246



Lemma 8.3.4. Let x ∈ R≥1 and (ν,N) ∈ Z≥2 × Z≥1 with ν ≥ N + 1. Then with
(8.37) and (8.38) one has,

|Eν
N,3(x)| < Eν

N,3

aN+1(ν)

xN+1
,

with

Eν
N,3 =

{
Eν
N+2, if ν ≥ N + 2

Eν
N+1, if ν = N + 1

. (8.39)

Proof.

|Eν
N,3(x)| =

∣∣∣ ∞∑
m=ν+1

ψνm(t;x)
∣∣∣ (by Lemma 8.3.1)

≤
∞∑

m=ν+1

∣∣∣(−1)m
(
ν− 1

2
m

)∣∣∣
(2x)mΓ(ν + 1

2
)

∫ 2x

0

e−ttν+m− 1
2 dt

<
∞∑

m=ν+1

∣∣∣(−1)m
(
ν− 1

2
m

)∣∣∣
(2x)mΓ(ν + 1

2
)

Γ(ν +N + 3
2
)
√
ν +N + 3

2√
2π

∫ 2x

0

tm−N−2 dt(
by (x, y) 7→

(
t, ν +N +

3

2

)
in (8.10)

)
=

1√
2π

(ν + 1
2
)N+1

√
ν +N + 3

2

(2x)N+1

(
ν − 1

2

N + 1

) ∞∑
m=ν+1

∣∣∣∣∣(−1)m
(
ν− 1

2
m

)(
ν− 1

2
N+1

)
∣∣∣∣∣ 1

m−N − 1
.

(8.40)

Using Lemmas 8.2.2, 8.2.3, and (8.91) along with the fact that 1

(Nk)
≤ k

N
for all N > k

and
√

1
1− ν

m
≤
√
ν + 1 for all m ≥ ν + 1, it follows that

∣∣∣∣∣(−1)m
(
ν− 1

2
m

)(
ν− 1

2
N+1

)
∣∣∣∣∣ ≤

 1
π
(N + 1)

√
ν+1

ν−N−1
1

m3/2 , if ν ≥ N + 2

1√
π
(N + 1)

√
ν + 1 1

m3/2 , if ν = N + 1
. (8.41)

For ν ≥ N + 2,

|Eν
N,3(x)|
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<

(
1

π
√

2π
(N + 1)

√
(ν + 1)(ν +N + 3

2
)

(ν −N − 1)

∞∑
m=ν+1

1

m3/2(m−N − 1)

)
aN+1(ν)

xN+1

(by (8.40) and (8.41))

<

(
1

π
√

2π
(N + 1)

√
(ν + 1)(ν +N + 3

2
)

(ν −N − 1)

∫ ∞
ν

1

t3/2(t−N − 1)
dt

)
aN+1(ν)

xN+1

=

(
1

π
√

2π
(N + 1)

√
(ν + 1)(ν +N + 3

2
)

(ν −N − 1)

∫ ∞
ν−N−1

1

(t+N + 1)3/2 t
dt

)
aN+1(ν)

xN+1

=
1

π

√
2

π

√
(ν + 1)(ν +N + 3

2
)

(ν −N − 1)

(
arcsinh

(√
N+1

ν−N−1

)
√
N + 1

−
√

1

ν + 1

)
aN+1(ν)

xN+1

<
1

π

√
2

π

√
(ν + 1)(ν +N + 3

2
)

(ν −N − 1)

(√
1

ν −N − 1
−
√

1

ν + 1

)
aN+1(ν)

xN+1(
since arcsinh x < x for all x > 0

)
. (8.42)

On the other hand, for ν = N + 1, it follows that

|Eν
N,3(x)|

<

(
1

π
√

2
(N + 1)

√
(ν + 1)(ν +N +

3

2
)

∞∑
m=ν+1

1

m3/2(m−N − 1)

)
aN+1(ν)

xN+1

(by (8.40) and (8.41))

=

(
1

π
√

2
(N + 1)

√
(N + 2)(2N + 5/2)

∞∑
m=N+2

1

m3/2(m−N − 1)

)
aN+1(ν)

xN+1

<

(
1

π
√

2
(N + 1)

√
(N + 2)(2N + 5/2)

(
1

(N + 2)3/2
+

∫ ∞
N+2

1

t3/2(t−N − 1)
dt

))
aN+1(ν)

xN+1

=

√
2

π

√
(N + 2)(2N + 5/2)

(
1

(N + 2)3/2
+

arcsinh(
√
N + 1)√

N + 1
−
√

1

N + 2

)
aN+1(ν)

xN+1

<

√
2

π

√
(2N + 5/2)(N + 2)

aN+1(ν)

xN+1
. (8.43)

Finally, (8.42) and (8.43) imply (8.39).
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Lemma 8.3.5. Let x ∈ R≥1 and (ν,N) ∈ Z≥2 × Z≥1 with ν ≥ N + 1. Then with
(8.37) and (8.38) one has,

|E(ν,N, x)| < Eν
N

aN+1(ν)

xN+1
,

with

Eν
N =

{
1 + Eν

N+2, if ν ≥ N + 2

1 + Eν
N+1, if ν = N + 1

. (8.44)

Proof. For ν ≥ N + 1,

|E(ν,N, x)| ≤
∣∣∣Eν,N,1(x) + Eν

N,2(x) + Eν
N,3(x)

∣∣∣ (by (8.21))

<

(
ν− 1

2
N+1

)
Γ(ν + 1

2
)(2x)N+1

(
Γ(ν +N +

3

2
, 2x) + γ(ν +N +

3

2
, 2x)

)
+

Eν
N,3

aN+1(ν)

xN+1
(by (8.25), (8.31) and (8.39))

=

(
ν− 1

2
N+1

)
Γ(ν + 1

2
)(2x)N+1

Γ(ν +N +
3

2
) + Eν

N,3

aN+1(ν)

xN+1

= (1 + Eν
N,3)

aN+1(ν)

xN+1
. (8.45)

From (8.39), we get (8.44).

Lemma 8.3.6. For x ∈ R≥1 and (ν,N) ∈ Z≥0 × Z≥1 with ν ≤ N ,

|Eν,N,1(x)| < 1√
2π
EN
ν,1

|aN+1(ν)|
xN+1

√
ν +N +

3

2
ln(N + 1),

with

EN
ν,1 =

(
1 +

(2ν + 1)(ν + 2)

ln(N + 1)
+

(2ν + 1)(ν + 2)

N + 2

)
. (8.46)

Proof. From Lemma 8.3.1, for all x ∈ R≥1 and (ν,N) ∈ Z≥0 × Z≥1 with ν ≤ N , we
have

|Eν,N,1(x)| =
∣∣∣ N∑
m=0

φνm(t;x)
∣∣∣ =

∣∣∣∣∣
∫ ∞

2x

e−ttν−
1
2

Γ(ν + 1
2
)

N∑
m=0

(
ν − 1

2

m

)
(−θ)m dt

∣∣∣∣∣ (θ :=
t

2x

)
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≤
∫ ∞

2x

e−ttν−
1
2

Γ(ν + 1
2
)

∣∣∣∣∣
N∑
m=0

(
ν − 1

2

m

)
(−θ)m

∣∣∣∣∣ dt
= 2(N + 1)

∣∣∣∣∣
(
ν − 1

2

N + 1

)∣∣∣∣∣
∫ ∞

2x

e−ttν−
1
2

Γ(ν + 1
2
)

∣∣∣∣∣
N∑
m=0

1

2m− 2ν + 1

(
N

m

)
ϑm

∣∣∣∣∣ dt
(by (8.12)), (8.47)

where ϑ := θ − 1.
Define

MN(ϑ) =
N∑
m=0

1

2m− 2ν + 1

(
N

m

)
ϑm

and

SN(ϑ) =
N∑
m=0

1

2m+ 2

(
N

m

)
ϑm =

(ϑ+ 1)N+1 − 1

2ϑ(N + 1)
. (8.48)

Consequently,∣∣∣MN(ϑ)− SN(ϑ)
∣∣∣

SN(ϑ)

=
1

SN(ϑ)
(2ν + 1)

∣∣∣∣∣
N∑
m=0

1

(2m− 2ν + 1)(2m+ 2)

(
N

m

)
ϑm

∣∣∣∣∣
≤ 1

SN(ϑ)

(2ν + 1)(ν + 2)

2

N∑
m=0

1

(m+ 1)(m+ 2)

(
N

m

)
ϑm(∣∣∣ 1

2m− 2ν + 1

∣∣∣ ≤ ν + 2

m+ 2
for all integers ν,m with 0 ≤ ν,m ≤ N

)

=
(2ν + 1)(ν + 2)

(ϑ+ 1)N+1 − 1

(
(ϑ+ 1)N+2 − ϑ(N + 2)− 1

ϑ(N + 2)

)
(

because
N∑
m=0

1

(m+ 1)(m+ 2)

(
N

m

)
ϑm =

(ϑ+ 1)N+2 − ϑ(N + 2)− 1

ϑ2(N + 1)(N + 2)

)

=
(2ν + 1)(ν + 2)

N + 2

(
1 +

∑N
i=0 θ

i − (N + 1)

θN+1 − 1

)
(by replacing ϑ+ 1 = θ). (8.49)
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Therefore,∣∣∣MN(ϑ)
∣∣∣

= SN(ϑ)

∣∣∣MN(ϑ)− SN(ϑ) + SN(ϑ)
∣∣∣

SN(ϑ)

≤ SN(ϑ)

(
1 +

∣∣∣MN(ϑ)− SN(ϑ)
∣∣∣

SN(ϑ)

)

=
1

2(N + 1)

θN+1 − 1

θ − 1

(
1 +

∣∣∣MN(ϑ)− SN(ϑ)
∣∣∣

SN(ϑ)

)

≤ 1

2(N + 1)

θN+1 − 1

θ − 1

(
1 +

(2ν + 1)(ν + 2)

N + 2

(
1 +

∑N
i=0 θ

i − (N + 1)

θN+1 − 1

))
(by (8.49))

=
1

2(N + 1)

(
1 +

(2ν + 1)(ν + 2)

N + 2

)
N∑
i=0

θi +
1

2(N + 1)

(2ν + 1)(ν + 2)

N + 2

N−1∑
i=0

(N − i)θi.

(8.50)

Now,

|Eν,N,1(x)|

≤

∣∣∣∣∣
(
ν − 1

2

N + 1

)∣∣∣∣∣
(

1 +
(2ν + 1)(ν + 2)

N + 2

)∫ ∞
2x

e−ttν−
1
2

Γ(ν + 1
2
)

N∑
i=0

θi dt

+

∣∣∣∣∣
(
ν − 1

2

N + 1

)∣∣∣∣∣(2ν + 1)(ν + 2)

N + 2

∫ ∞
2x

e−ttν−
1
2

Γ(ν + 1
2
)

N−1∑
i=0

(N − i)θi dt (by (8.47) and (8.50))

=

∣∣∣∣∣
(
ν − 1

2

N + 1

)∣∣∣∣∣
(

1 +
(2ν + 1)(ν + 2)

N + 2

)
N∑
i=0

1

Γ(ν + 1
2
)(2x)i

∫ ∞
2x

e−ttν+i− 1
2 dt

+

∣∣∣∣∣
(
ν − 1

2

N + 1

)∣∣∣∣∣(2ν + 1)(ν + 2)

N + 2

N−1∑
i=0

N − i
Γ(ν + 1

2
)(2x)i

∫ ∞
2x

e−ttν+i− 1
2 dt, (8.51)

where θ = t
2x

.
In order to estimate the two sums with integrals on the right hand side of (8.51),
define

I1(ν,N, x) =

(
1 +

(2ν + 1)(ν + 2)

N + 2

)
N∑
i=0

1

Γ(ν + 1
2
)(2x)i

∫ ∞
2x

e−ttν+i− 1
2 dt
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and

I2(ν,N, x) =
(2ν + 1)(ν + 2)

N + 2

N−1∑
i=0

N − i
Γ(ν + 1

2
)(2x)i

∫ ∞
2x

e−ttν+i− 1
2 dt.

Applying the substitution (x, y) 7→ (t, ν +N + 3
2
) in (8.10), it follows that

I1(ν,N, x)

<

(
1 +

(2ν + 1)(ν + 2)

N + 2

)
(ν + 1

2
)N+1

√
ν +N + 3

2√
2π

N∑
i=0

1

(2x)i

∫ ∞
2x

1

tN−i+2
dt

=

(
1 +

(2ν + 1)(ν + 2)

N + 2

)
(ν + 1

2
)N+1

√
ν +N + 3

2√
2π (2x)N+1

N∑
i=0

1

N − i+ 1

<

(
1 +

(2ν + 1)(ν + 2)

N + 2

)
(ν + 1

2
)N+1

√
ν +N + 3

2√
2π (2x)N+1

ln(N + 1), (8.52)

and

I2(ν,N, x) <
(2ν + 1)(ν + 2)

N + 2

(ν + 1
2
)N+1

√
ν +N + 3

2√
2π

N−1∑
i=0

N − i
(2x)i

∫ ∞
2x

1

tN−i+2
dt

=
(2ν + 1)(ν + 2)

N + 2

(ν + 1
2
)N+1

√
ν +N + 3

2√
2π (2x)N+1

N−1∑
i=0

N − i
N − i+ 1

< (2ν + 1)(ν + 2)
(ν + 1

2
)N+1

√
ν +N + 3

2√
2π (2x)N+1

. (8.53)

By (8.51), (8.52) and (8.53), we obtain

|Eν,N,1(x)| < 1√
2π
EN
ν,1

|aN+1(ν)|
xN+1

√
ν +N +

3

2
ln(N + 1).

Lemma 8.3.7. For x ∈ R≥1 and (ν,N) ∈ Z≥0 × Z≥1 with ν ≤ N ,

|EN
ν,2(x)| <

(
√

2 +
1√

ν +N + 3
2

)
|aN+1(ν)|
xN+1

√
ν +N +

3

2
. (8.54)
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Proof. From Lemma 8.3.1, we get∣∣∣EN
ν,2(x)

∣∣∣
=

∣∣∣ ∞∑
m=N+1

(−1)m
(
ν− 1

2
m

)
(2x)mΓ(ν + 1

2
)

∫ 2x

0

e−ttν+m− 1
2 dt

∣∣∣
≤

∣∣∣(ν− 1
2

N+1

)
(−1)N+1

∣∣∣
(2x)N+1Γ(ν + 1

2
)

∫ 2x

0

e−ttν+N+ 1
2 dt+

∞∑
m=N+2

∣∣∣(−1)m
(
ν− 1

2
m

)∣∣∣
(2x)mΓ(ν + 1

2
)

∫ 2x

0

e−ttν+m− 1
2 dt

<
|aN+1(ν)|
xN+1

+
1√
2π

|aN+1(ν)|
xN+1

√
ν +N +

3

2

∞∑
m=N+2

∣∣∣∣∣ (−1)m
(
ν− 1

2
m

)
(−1)N+1

(
ν− 1

2
N+1

)
∣∣∣∣∣ 1

m−N − 1(
by the substitution (x, y) 7→ (t, ν +N +

3

2
) in (8.10)

)
, (8.55)

and using Lemma 8.2.3, it follows that∣∣∣∣∣ (−1)m
(
ν− 1

2
m

)
(−1)N+1

(
ν− 1

2
N+1

)
∣∣∣∣∣ ≤ 2√

π

√
N + 1− ν
m− ν

(
N+1
ν

)(
m
ν

) (by (8.91)) <
2√
π

√
N + 1

m
(8.56)(

since

(
N + 1

ν

)
<

(
m

ν

)
and

√
1

1− ν
m

≤
√

N + 1

N + 1− ν
for all m ≥ N + 2

)
.

Using (8.55) and (8.56), we see that∣∣∣EN
ν,2(x)

∣∣∣
<
|aN+1(ν)|
xN+1

+

√
2

π

|aN+1(ν)|
xN+1

√
ν +N +

3

2

√
N + 1

∞∑
m=N+2

1√
m (m−N − 1)

<
|aN+1(ν)|
xN+1

+

√
2

π

|aN+1(ν)|
xN+1

√
ν +N +

3

2

∫ ∞
1

√
N + 1

t
√
t+N + 1

dt

=
|aN+1(ν)|
xN+1

+
2
√

2

π

|aN+1(ν)|
xN+1

√
ν +N +

3

2

(
π

2
− arctan

( 1√
N + 1

))

<
|aN+1(ν)|
xN+1

+
√

2
|aN+1(ν)|
xN+1

√
ν +N +

3

2

=

(
√

2 +
1√

ν +N + 3
2

)
|aN+1(ν)|
xN+1

√
ν +N +

3

2
. (8.57)
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From (8.46) and (8.54), we have the final estimation for the error term with ν ≤ N ,
presented in the following lemma.

Lemma 8.3.8. Let x ∈ R≥1 and (ν,N) ∈ Z≥0 × Z≥1 with ν ≤ N . Then with EN
ν,1

as in (8.46),

|E(ν,N, x)| < EN
ν

|aN+1(ν)|
xN+1

√
ν +N +

3

2
ln(N + 1),

with

EN
ν =

1√
2π
EN
ν,1 +

1

ln(N + 1)

(
√

2 +
1√

ν +N + 3
2

)
. (8.58)

Finally from Lemmas 8.3.5 and 8.3.8, we can bound the error term E(ν,N, x),
given in (8.21), as follows.

Theorem 8.3.9. Let x ∈ R≥1 and (ν,N) ∈ Z≥0 × Z≥1. Then using definitions
(8.37)-(8.38) and (8.58),∣∣∣√2πx

ex
Iν(x)−

N∑
m=0

(−1)mam(ν)

xm

∣∣∣ < E(ν,N)
|aN+1(ν)|
xN+1

,

with

E(ν,N) =


1 + Eν

N+2, if ν ≥ N + 2

1 + Eν
N+1, if ν = N + 1

EN
ν

√
ν +N + 3

2
ln(N + 1), if ν ≤ N

. (8.59)

Corollary 8.3.10. For ν ∈ Z≥0, N = 3 and x ∈ R≥1,∣∣∣√2πx

ex
Iν(x)−

3∑
m=0

(−1)mam(ν)

xm

∣∣∣ < E(ν, 3, x),

with

E(ν, 3, x) =



ν8

382x4
, if ν ≥ 4

ν8

86x4
, if ν = 3

ν8

25x4
, if ν = 2

12ν8

5x4
, if ν = 1

1
x4
, if ν = 0

. (8.60)
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Proof. It suffices to estimate E(ν,N)|aN+1(ν)| for N = 3, defined in (8.59). For
ν ∈ {0, 1, 2, 3, 4} and N = 3, by numerical checking in Mathematica, we confirm
that

E(ν, 3)|a4(ν)| <



ν8

382
, if ν = 4

ν8

86
, if ν = 3

ν8

25
, if ν = 2

12ν8

5
, if ν = 1

1, if ν = 0

.

For the remaining case ν ≥ 5 we checked by Mathematica that E(ν, 3)|a4(ν)| < ν8

382
;

see Subsection 8.6.2.

8.4 Inequalities for modified Bessel function of half-

integral order

The section establishes inequalities for Iν+1/2(x) with ν ∈ Z≥2 and x ∈ R≥1. Again
we use short hand notations from Section 8.3 as (A), (PHI), (PSI), etc. From (8.19)

we obtain the asymptotic expansion of
√

2πx
ex

Iν+1/2(x) in the form
∑∞

m=0(−1)mam(ν+
1
2
)/xm. Following a similar treatment as worked out in the proof of Lemma 8.3.1, we

truncate the infinite series
∑∞

m=0 ψ
ν+1/2
m (t;x) at some point N > 0 and consequently

obtain two remainder terms, namely,

−
N∑
m=0

φν+1/2
m (t;x) +

ν∑
m=N+1

ψν+1/2
m (t;x); (8.61)

see also (8.62). Our next step is to obtain an upper bound of the absolute value of
the remainder term by estimating the two finite sums (8.61). Using Lemma 8.2.8
(resp. 8.2.9), we obtain (8.65) (resp. (8.71)). Lemmas 8.4.4 and 8.4.5 together imply

Theorem 8.4.6 which introduces an infinite family of inequalities for
√

2πx
ex

Iν+1/2(x).
Recalling (8.20), note that

am(ν + 1/2) =

(
ν
m

)
(ν + 1)m

2m
.

Lemma 8.4.1. For x ∈ R≥1 and (ν,N) ∈ Z≥2 × Z≥1,
√

2πx

ex
Iν+1/2(x)−

N∑
m=0

(−1)mam(ν + 1/2)

xm
= −

N∑
m=0

φν+1/2
m (t;x) +

ν∑
m=N+1

ψν+1/2
m (t;x).

(8.62)
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Proof. From (8.19) it follows that
√

2πx

ex
Iν+1/2(x) =

∞∑
m=0

ψν+1/2
m (t;x)

(
by substitution ν 7→ ν +

1

2

)
=

ν∑
m=0

ψν+1/2
m (t;x)

(
as ν ∈ Z≥2 and

(
ν

m

)
= 0 for m > ν

)
=

N∑
m=0

ψν+1/2
m (t;x) +

ν∑
m=N+1

ψν+1/2
m (t;x)

=
N∑
m=0

(−1)mam(ν + 1/2)

(2x)m
−

N∑
m=0

φν+1/2
m (t;x) +

ν∑
m=N+1

ψν+1/2
m (t;x).

Remark 8.4.2. From (8.62), it is clear that throughout the rest of the section we
have to consider the case ν ≥ N . This is because

(
ν
N

)
= 0 for ν < N as pointed out

in the proof of Lemma 8.4.1.

We present identity (8.63) which serves for the error analysis for N ∈ Z≥1. To this
end, following the Remark 8.4.2, we consider ν ∈ Z≥2.

Lemma 8.4.3. For x ∈ R≥1 and ν ∈ {0, 1},

I1/2(x) =

√
2

πx
sinhx and I3/2(x) =

√
2

πx

(
coshx− 1

x
sinhx

)
. (8.63)

Proof. We observe that
√

2πx

ex
Iν+1/2(x) =

ν∑
m=0

ψν+1/2
m (t;x). (8.64)

For ν = 0 in (8.64), it follows that

I1/2(x) =
ex√
2πx

∫ 2x

0

e−t dt =

√
2

πx
sinhx,

and for ν = 1,

I3/2(x) =
ex√
2πx

(∫ 2x

0

e−tt dt− 1

2x

∫ 2x

0

e−tt2 dt
)

=
ex√
2πx

((
1− 1

x

)
+ e−2x

(
1 +

1

x

))
=

√
2

πx

(
coshx− 1

x
sinhx

)
.
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Lemma 8.4.4. For x ∈ R≥1 and (ν,N) ∈ Z≥2 × Z≥1,∣∣∣− N∑
m=0

φν+1/2
m (t;x)

∣∣∣ < (
ν

N+1

)
ν!(2x)N+1

Γ(ν +N + 2, 2x), (8.65)

where Γ is the incomplete gamma function from (8.7).

Proof. From Lemma 8.4.1, for all x ∈ R≥1 and (ν,N) ∈ Z≥2 × Z≥1 we have

−
N∑
m=0

φν+1/2
m (t;x) = −

∫ ∞
2x

e−ttν

ν!

N∑
m=0

(
ν

m

)(
− t

2x

)m
dt

= −
∫ ∞

2x

e−ttν

ν!

N∑
m=0

(
ν

m

)
(−θ)m dt where θ :=

t

2x
.

(8.66)

We first consider the case where N is an even positive integer. Then

−
(

ν

N + 1

)
θN+1 < −

N∑
m=0

(
ν

m

)
(−θ)m < 0 (by (8.17)). (8.67)

Now from (8.66) and (8.67), it follows that

−φν+1/2
N+1 (t;x) < −

N∑
m=0

φν+1/2
m (t;x) < 0. (8.68)

If N is an odd positive integer, it is immediate that

0 < −
N∑
m=0

(
ν

m

)
(−θ)m <

(
ν

N + 1

)
θN+1 (by (8.17)). (8.69)

By (8.66) and (8.69), we obtain

0 < −
N∑
m=0

φν+1/2
m (t;x) < φ

ν+1/2
N+1 (t;x). (8.70)

(8.68) and (8.70) together imply (8.65).

Lemma 8.4.5. For x ∈ R≥1 and (ν,N) ∈ Z≥2 × Z≥1,∣∣∣ ν∑
m=N+1

ψν+1/2
m (t;x)

∣∣∣ < (
ν

N+1

)
ν!(2x)N+1

γ(ν +N + 2, 2x), (8.71)

where γ is the incomplete gamma function from (8.6).
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Proof. By Lemma 8.4.1, for all x ∈ R≥1 and (ν,N) ∈ Z>1 × Z>0, it follows that

ν∑
m=N+1

ψν+1/2
m (t;x) =

∫ 2x

0

e−ttν

ν!

ν∑
m=N+1

(
ν

m

)(
− t

2x

)m
dt

=

∫ 2x

0

e−ttν

ν!

ν∑
m=N+1

(
ν

m

)
(−θ)m dt where θ :=

t

2x
.

(8.72)

If N is an even positive integer, then it follows that

−
(

ν

N + 1

)
θN+1 <

ν∑
m=N+1

(
ν

N

)
(−θ)m < 0 (by (8.18)). (8.73)

Consequently, from (8.72) and (8.73) it is immediate that

− ψν+1/2
N+1 (t;x) <

ν∑
m=N+1

ψν+1/2
m (t;x) < 0. (8.74)

Similarly, if N is an odd positive integer we get

0 <
ν∑

m=N+1

(
ν

N

)
(−θ)m <

(
ν

N + 1

)
θN+1 (by (8.18)). (8.75)

Equations (8.72) and (8.75) lead to the following inequality

0 <
ν∑

m=N+1

ψν+1/2
m (t;x) < ψ

ν+1/2
N+1 (t;x). (8.76)

Putting (8.74) and (8.76) together gives (8.71).

Theorem 8.4.6. For x ∈ R≥1 and (ν,N) ∈ Z≥2 × Z≥1,

∣∣∣√2πx

ex
Iν+1/2(x)−

N∑
m=0

(−1)mam(ν + 1/2)

(2x)m

∣∣∣ < aN+1(ν + 1
2
)

xN+1
. (8.77)

Proof. For ν = N , we observe that the (8.62) of Lemma 8.4.1 reduces to

√
2πx

ex
Iν+1/2(x)−

N∑
m=0

(−1)mam(ν + 1/2)

(2x)m
= −

N∑
m=0

φν+1/2
m (t;x).
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From (8.65), it follows that∣∣∣∣∣
√

2πx

ex
Iν+1/2(x)−

N∑
m=0

(−1)m
(
ν
m

)
(ν + 1)m

(2x)m

∣∣∣∣∣ <
(

ν
N+1

)
ν!(2x)N+1

Γ(ν +N + 2, 2x)

<

(
ν

N+1

)
ν!(2x)N+1

Γ(ν +N + 2)

=
aN+1(ν + 1/2)

xN+1
.

Whereas for ν > N , combining (8.65) and (8.71), we arrive at (8.77).

8.5 Conclusion

We have studied the error analysis for Iν(x), where ν either is a non-negative integer
or a non-negative half integer. Our major results are the inequalities presented in
Theorems 8.3.9 and 8.4.6. The main objective of this section is to carry out similar
considerations as done in Section 8.3 but for ν ∈ R≥0.

For ν ∈ R≥0, define

Ẽν,N,1(x) = −
N∑
m=0

φνm(t;x),

Ẽν
N,2(x) =

bνc∑
m=N+1

ψνm(t;x),

Ẽν
N,3(x) =

∞∑
m=bνc+1

ψνm(t;x),

and

ẼN
ν,2(x) =

∞∑
m=N+1

ψνm(t;x).

Throughout this section, for a given x ∈ R, we follow the standard notation bxc
(resp. {x}) to denote integer part (resp. fractional part) of x. We split E(ν,N, x)
depending on whether bνc ≥ N + 1 or bνc ≤ N , as stated in Lemma 8.5.1. In

(8.79), (8.80) and (8.81), we obtain upper bounds for Ẽν,n,1(x), Ẽν
N,2(x), and Ẽν

N,3(x)
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when bνc ≥ N + 1. From Lemmas 8.5.2, 8.5.3 and 8.5.4, we get an upper bound for

|Ẽ(ν,N, x)| in Lemma 8.5.5.
For bνc ≤ N , we obtain an upper bound for |E(ν,N, x)| in Lemma 8.5.9 as a

straightforward implication of Lemmas 8.5.6 and 8.5.8.
Lemmas 8.5.5 and 8.5.9 give rise to Theorem 8.5.10 for all ν ∈ R≥0. Restricting

ν ∈ Z≥0 (resp. ν ∈ 1
2

+ Z≥0) in (8.89), we retrieve Theorem 8.3.9 (resp. Theorem
8.4.6).

Lemma 8.5.1. For x ∈ R≥1 and (ν,N) ∈ R≥0 × Z≥0,

√
2πx

ex
Iν(x)−

N∑
m=0

(−1)mam(ν)

xm
= Ẽ(ν,N, x),

with

Ẽ(ν,N, x) =

{
Ẽν,N,1(x) + Ẽν

N,2(x) + Ẽν
N,3(x), if bνc ≥ N + 1

Ẽν,N,1(x) + ẼN
ν,2(x), if bνc ≤ N

, (8.78)

and am(ν) be as in (8.20).

Lemma 8.5.2. For x ∈ R≥1 and (ν,N) ∈ R≥2 × Z≥1 with bνc ≥ N + 1,

|Ẽν,N,1(x)| <
(
ν− 1

2
N+1

)
Γ(ν + 1

2
)(2x)N+1

Γ(ν +N +
3

2
, 2x), (8.79)

where Γ is the incomplete gamma function from (8.7).

Proof. Analogous to the proof of Lemma 8.3.2, by Lemma 8.2.6, we have

(−1)N
N∑
m=0

(
ν − 1

2

m

)
(−α)m > 0,

which is also valid for ν ∈ R≥2. This is due to the fact that Lemma 8.2.6 is an
immediate implication of Lemma 8.2.5 which holds for all ν ∈ R≥0.

Lemma 8.5.3. For x ∈ R≥1 and (ν,N) ∈ R≥2 × Z≥1 with bνc ≥ N + 1,

|Ẽν
N,2(x)| <

(
ν− 1

2
N+1

)
Γ(ν + 1

2
)(2x)N+1

γ(ν +N +
3

2
, 2x), (8.80)

where γ is the incomplete gamma function from (8.6).
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Proof. For bνc ≥ N + 1,

Ẽν
N,2(x) =

∫ 2x

0

e−ttν−
1
2

Γ(ν + 1
2
)

bνc∑
m=N+1

(
ν − 1

2

m

)
(−θ)mdt where θ :=

t

2x
.

Following up the proof of Lemma 8.3.3, we observe that it remains to prove for all
ν ∈ R≥2 and θ ∈ (0, 1],

S(bνc) := (−1)N
bνc∑

m=N+1

(
ν − 1

2

m

)
(−θ)m < 0.

Using the Paule-Schorn [118] package fastZeil, we obtain

S(bνc+ 1) = (1− θ)S(bνc)− θN+1

(
ν − 1

2

N

)
− (−1)bνc+NθN+1

(
ν − 1

2

bνc+ 1

)
.

The rest of the proof is analogous to the proof of Lemma 8.2.7.

For the statements of Lemmas 8.5.4-8.5.9 and of Theorem 8.5.10 we use the following
definitions,

Ẽν
N+1 =

√
2

π

√
2N +

5

2
+ {ν}

(√
N + 2− 1

) bνc−1∏
i=0

(
1 +

{ν}
bνc − i− 1

2

)
and

Ẽν
N+2 =

1

π

√
2

π

√
bνc+ 1

bνc −N − 1

√
ν +N +

3

2

(√
1

bνc −N
−

√
1

bνc+ 1

)
×

bνc−1∏
i=0

(
1 +

{ν}
bνc − i− 1

2

)
.

Lemma 8.5.4. For x ∈ R≥1 and (ν,N) ∈ R≥2 × Z≥1 with bνc ≥ N + 1,

|Ẽν
N,3(x)| < Ẽν

N,3

aN+1(ν)

xN+1
,

with

Ẽν
N,3 =

{
Ẽν
N+2, if bνc ≥ N + 2

Ẽν
N+1, if bνc = N + 1

. (8.81)
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Proof. Similar to (8.40) we get

|Ẽν
N,3(x)| < 1√

2π

aN+1(ν)

xN+1

√
ν +N +

3

2

∞∑
m=ν+1

∣∣∣∣∣(−1)m
(
ν− 1

2
m

)(
ν− 1

2
N+1

)
∣∣∣∣∣ 1

m−N − 1
. (8.82)

Now, ∣∣∣∣∣(−1)m
(
ν− 1

2
m

)(
ν− 1

2
N+1

)
∣∣∣∣∣

=

∣∣∣∣∣(−1)m
(bνc− 1

2
m

)(bνc− 1
2

N+1

)
∏m−1

i=0

(
1 + {ν}

bνc−i− 1
2

)
∏N

i=0

(
1 + {ν}

bνc−i− 1
2

) ∣∣∣∣∣
=

∣∣∣∣∣(−1)m
(bνc− 1

2
m

)(bνc− 1
2

N+1

)
∣∣∣∣∣
∏bνc−1

i=0

(
1 + {ν}

bνc−i− 1
2

)∣∣∣(1− 2{ν})
∣∣∣∏m−bνc−1

i=1

(
1− {ν}

i+ 1
2

)
∏N

i=0

(
1 + {ν}

bνc−i− 1
2

)
<

∣∣∣∣∣(−1)m
(bνc− 1

2
m

)(bνc− 1
2

N+1

)
∣∣∣∣∣
bνc−1∏
i=0

(
1 +

{ν}
bνc − i− 1

2

)
. (8.83)

Applying (8.41) with the substitution ν 7→ bνc, it follows that∣∣∣∣∣(−1)m
(bνc− 1

2
m

)(bνc− 1
2

N+1

)
∣∣∣∣∣ ≤

 1
π
(N + 1)

√
bνc+1
bνc−N−1

1
m3/2 , if bνc ≥ N + 2

1√
π
(N + 1)

√
bνc+ 1 1

m3/2 , if bνc = N + 1
. (8.84)

Substituting (8.83) and (8.84) into (8.82) and proceeding analogously as for the
estimation worked out in (8.42) and (8.43), we get (8.81).

Lemma 8.5.5. For x ∈ R≥1 and (ν,N) ∈ R≥2 × Z≥1 with bνc ≥ N + 1,

|Ẽ(ν,N, x)| < Ẽν
N

aN+1(ν)

xN+1
,

with

Ẽν
N =

{
1 + Ẽν

N+2, if bνc ≥ N + 2

1 + Ẽν
N+1, if bνc = N + 1

. (8.85)
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Lemma 8.5.6. For x ∈ R≥1 and (ν,N) ∈ R≥0 × Z≥1 with bνc ≤ N ,

|Ẽν,N,1(x)| < 1√
2π
ẼN
ν,1

|aN+1(ν)|
xN+1

√
ν +N +

3

2
ln(N + 1),

with

ẼN
ν,1 =

(
1 +

(
1

ln(N + 1)
+

1

N + 2

)
(2ν + 1)(dνe+ 2)

|(1− 2{ν})|

)
. (8.86)

Proof. For all ν ∈ R≥0 with bνc ≤ N and non-negative integers 0 ≤ m ≤ N , it
follows that ∣∣∣ 1

2m− 2ν + 1

∣∣∣ ≤ dνe+ 2

m+ 2

∣∣∣ 1

1− 2{ν}

∣∣∣.
For the rest, one can follow the same line of arguments as presented in the proof of
Lemma 8.3.6.

Remark 8.5.7. Observe that on the right hand side of (8.86), the term |(1− 2{ν})|
is in the denominator. The factor (1−2{ν}) makes trouble if and only if {ν} = 1/2.
But as we have already pointed out in the Remark 8.4.2 that for half-integral order
one has to consider only the case ν ≥ N . In short, for the bνc ≤ N case, it is being
understood that {ν} ∈ [0, 1

2
) ∪ (1

2
, 1).

Lemma 8.5.8. For x ∈ R≥1 and (ν,N) ∈ R≥0 × Z≥1 with bνc ≤ N ,

|Ẽν
N,2(x)| <

(
√

2

∣∣∣∣∣
∏bνc

i=0

(
1 + {ν}

i− 1
2

)
∏N−bνc

i=0

(
1− {ν}

i+ 1
2

)∣∣∣∣∣+
1√

ν +N + 3
2

)
|aN+1(ν)|
xN+1

√
ν +N +

3

2
.

(8.87)

Proof. Analogous to (8.55), it follows that∣∣∣ẼN
ν,2(x)

∣∣∣
<
|aN+1(ν)|
xN+1

+
1√
2π

|aN+1(ν)|
xN+1

√
ν +N +

3

2

∞∑
m=N+2

∣∣∣∣∣ (−1)m
(
ν− 1

2
m

)
(−1)N+1

(
ν− 1

2
N+1

)
∣∣∣∣∣ 1

m−N − 1
.

Therefore, it is sufficient to estimate

∣∣∣∣∣ (−1)m(ν−
1
2

m )
(−1)N+1(ν−

1
2

N+1)

∣∣∣∣∣ to get (8.87). Similar to (8.83),

we see that ∣∣∣∣∣ (−1)m
(
ν− 1

2
m

)
(−1)N+1

(
ν− 1

2
N+1

)
∣∣∣∣∣ <

∣∣∣∣∣ (−1)m
(bνc− 1

2
m

)
(−1)N+1

(bνc− 1
2

N+1

)
∣∣∣∣∣
∣∣∣∣∣
∏bνc

i=0

(
1 + {ν}

i− 1
2

)
∏N−bνc

i=0

(
1− {ν}

i+ 1
2

)∣∣∣∣∣.
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Lemma 8.5.9. For x ∈ R≥1 and (ν,N) ∈ R≥0 × Z≥1 with bνc ≤ N ,

|Ẽ(ν,N, x)| < ẼN
ν

|aN+1(ν)|
xN+1

√
ν +N +

3

2
ln(N + 1),

with

ẼN
ν =

1√
2π
ẼN
ν,1 +

1

ln(N + 1)

(
√

2

∣∣∣∣∣
∏bνc

i=0

(
1 + {ν}

i− 1
2

)
∏N−bνc

i=0

(
1− {ν}

i+ 1
2

)∣∣∣∣∣+
1√

ν +N + 3
2

)
. (8.88)

Combining Lemmas 8.5.5 and 8.5.9, we arrive at the following theorem.

Theorem 8.5.10. For x ∈ R≥1 and (ν,N) ∈ R≥0 × Z≥1,∣∣∣√2πx

ex
Iν(x)−

N∑
m=0

(−1)mam(ν)

xm

∣∣∣ < Ẽ(ν,N)
|aN+1(ν)|
xN+1

,

with

Ẽ(ν,N) =


1 + Ẽν

N+2, if bνc ≥ N + 2

1 + Ẽν
N+1, if bνc = N + 1

ẼN
ν

√
ν +N + 3

2
ln(N + 1), if bνc ≤ N

. (8.89)

8.6 Appendix

8.6.1 Proofs of some lemmas presented in Section 8.2.

Proof of Lemma 8.2.1: We define f(x) = xy

ex
. Now f ′(x) = yxy−1−xy

ex
and f ′(x) = 0 at

x = y. Note that f ′′(x) = y(y−1)xy−2−2yxy−1+xy

ex
and consequently, f ′′(y) = −yy−1

ey
< 0

for all y ∈ R>0. So, f(x) attains its maximum at x = y; i.e., f(x) ≤ f(y) = (y
e
)y.

From [27, eq. 5.6.1], we have

1 < (2π)−1/2 x1/2−x ex Γ(x) for x ∈ R>0. (8.90)

By the substitution x 7→ y in (8.90) and using the maximum value of f(x), it follows
that

Γ(y)√
2π
y

> (
y

e
)y ≥ f(x),
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which implies (8.10).

Proof of Lemma 8.2.2: For m > ν,(
ν − 1

2

m

)
=

(2ν − 1)(2ν − 3) . . . (2ν − 2m+ 1)

2m m!

=
1

2m m!

ν!

2ν

(
2ν

ν

)
(−1)m−ν

(2m− 2ν)!

2m−ν (m− ν)!
=

(−1)m−ν

4m

(
2ν
ν

)(
2m−2ν
m−ν

)(
m
ν

) ,

and for m ≤ ν,(
ν − 1

2

m

)
=

(2ν − 1)(2ν − 3) . . . (2ν − 2m+ 1)

2m m!

=
1

2m m!

(2ν)!

(2ν − 2m)!

(ν −m)!

ν!
=

1

4m

(
2ν
ν

)(
ν
m

)(
2ν−2m
ν−m

) .
Proof of Lemma 8.2.3:

N∑
m=k

(−1)m
(
ν − 1

2

m

)(
m

k

)
=

N∑
m=k

(−1)m
(
ν − 1

2

k

)(
ν − 1

2
− k

m− k

)
(by [68, (5.21)])

=

(
ν − 1

2

k

)
(−1)k

N−k∑
m=0

(
ν − 1

2
− k

m

)
(−1)m

= (−1)N
(
ν − 1

2

k

)(
ν − 3

2
− k

N − k

)
(by [68, (5.16)]),

and

2(−1)N+1(N + 1)

(
ν − 1

2

N + 1

)
1

2k − 2ν + 1

(
N

k

)
= (−1)N

(
ν − 1

2

k

)(
ν − 3

2
− k

N − k

)
(by [68, (5.21)]).

Proof of Lemma 8.2.4: First, observe that for all n ∈ Z≥1,

4n

2
√
n
≤
(

2n

n

)
≤ 4n√

πn
. (8.91)
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Now for m > ν,∣∣∣(−1)m
(
ν − 1

2

m

)∣∣∣ =
1

4m

(
2ν
ν

)(
2m−2ν
m−ν

)(
m
ν

) (by Lemma 8.2.2)

≤ 1

4m
4ν√
πν

4m−ν√
π(m− ν)

1(
m
ν

) (by (8.91))

=
1

π
√
ν(m− ν)

1(
m
ν

) ,
and for m ≤ ν,∣∣∣(−1)m

(
ν − 1

2

m

)∣∣∣ =
1

4m

(
2ν
ν

)(
ν
m

)(
2ν−2m
ν−m

) (by Lemma 8.2.2)

≤ 1

4m
4ν√
πν

2
√
ν −m

4ν−m

(
ν

m

)
(by (8.91))

≤ 2√
π

(
ν

m

) (
since

√
ν −m
ν
≤ 1
)
.

8.6.2 Mathematica computation for the proof of Corollary
8.3.10.

We complete the proof of Corollary 8.3.10 by checking E(ν, 3)a4(ν) < ν8

382
for all

ν ≥ 5 with Mathematica using Cylindrical Algebraic Decomposition [44]. In order
to do this computation, our input for am(ν) (resp. for E(ν,N) with ν > N + 1) is
a[v,m] (resp. E1[v,N ]) in Mathematica.

In[16]:= a[v,m] :=
Binomial[v − 1

2
,m] Pochhammer[v + 1

2
,m]

2m

In[17]:= E1[v,N] :=

(
1 +

1

π

√
2

π

√
v + 1

v −N− 1

√
v + N +

3

2

(√
1

v −N
−

√
1

v + 1

))
a[v,N + 1]

In[18]:= CylindricalDecomposition[{
v8

382
> E1[v, 3], v ≥ 5}, v]

Out[18]= v ≥ 5
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Combinatorial Inequalities
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Chapter 9

Positivity of the second shifted
difference of partitions and
overpartitions

This chapter is devoted to the study of inequalities related to the second shifted
difference of the number of integer partitions p(n) and of overpartitions p(n) by an
elementary combinatorial approach. Recently Gomez, Males, and Rolen proved the
positivity of ∆2

j(p(n)) = p(n) − 2p(n − j) + p(n − 2j) by employing the Hardy-
Ramanujan-Rademacher formula for p(n) and Lehmer’s error bound. Our goal is to
prove ∆2

j(p(n)) ≥ 0 (resp. ∆2
j(p(n)) > 0) by an explicit description of a non-empty

subset, say X2
p (n, j) of the set of integer partitions P (n) (resp. X2

p (n, j) and the set

of overpartitions P (n)) with |X2
p (n, j)| = ∆2

j(p(n)) (resp. |X2
p (n, j)| = ∆2

j(p(n))) .

9.1 Introduction

A partition of a positive integer n is a finite nonincreasing sequence of positive
integers λ = (λ1, . . . , λ`) such that

∑`
i=1 λi = n, denoted by λ ` n. The set of

partitions of n is denoted by P (n) and |P (n)| = p(n). For λ ` n, we define `(λ) to
be the total number of parts of λ and multλ(λi) to be the multiplicity of the part λi in
λ. For λ ` n with λ = (λ1, . . . , λ`) and µ ` m with µ = (µ1, . . . , µ`′ ), define the union
λ∪µ ` m+n to be the partition with parts {λi, µj} arranged in nonincreasing order.
Inequalities for the partition function have been studied in many directions and
proofs of such inequalities were by employing analytic tools as the Hardy-Ramanujan-
Rademacher formula for p(n), see [76, 122, 124, 123], and Lehmer’s error bound [99,
98]. Let ∆ be the backward difference operator defined on a sequence a(n) by
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∆(a(n)) := a(n) − a(n − 1) and, for r ≥ 1, ∆r(a(n)) := ∆
(

∆r−1(a(n))
)

. In 1977,

Good [67] conjectured that ∆r(p(n)) alternates in sign up to a certain value n = n(r),
and then it stays positive. Using the Hardy-Ramanujan-Rademacher series for p(n),
Gupta [71] proved that for any given r ∈ Z≥1, ∆r(p(n)) > 0 for sufficiently large
n. In 1988, Odlyzko [114] proved the conjecture of Good and obtained the following
asymptotic formula for n(r):

n(r) ∼ 6

π2
r2 log2 r as r →∞.

For a more detailed study on ∆(p(n)), we refer to [3]. Recently, Gomez, Males and
Rolen studied the second order j-shifted difference of p(n), defined by

∆2
j(p(n)) = p(n)− 2p(n− j) + p(n− 2j)

and proved the following theorem.

Theorem 9.1.1 (Theorem 1.2, [66]). Let n ≥ 2 and j ≤ 1
4

√
n− 1

24
. Then we have

that
∆2
j(p(n)) ≥ 0.

In other words, p(n) satisfies the extended convexity result

p(n) + p(n− 2j) ≥ 2p(n− j).

An overpartition of n is a nonincreasing sequence of natural numbers whose sum
is n in which the first occurrence of a number may be overlined. We denote the
number of overpartitions of n by p(n) and the set of overpartitions of n by P (n). For
example, the 4 overpartitions of 2 are 2, 2, 1 + 1, 1 + 1. The Study on overpartitions
dates back to MacMahon [103] but under different nomenclature an extensive study
on the overpartitions began with the work of Corteel and Lovejoy [46]. A Hardy-
Ramanujan-Rademacher type series expansion for p(n) was due to Zuckerman [156].
Recently, Wang, Xie, and Zhang [148] proved that ∆r(p(n)) > 0 for n ≥ n(r), where
n(r) is a positive integer depending on r.

The main motivation of this chapter is to prove Theorem 9.1.1 using a combinato-
rial approach rather than the analytic one; i.e., by studying an asymptotic estimate
of p(n−j)

p(n)
as in [66, Theorem 1.1]. Moreover, we will show ∆2

j(p(n)) ≥ 0 for all n ≥ 2j,

a weaker assumption in comparison to n ≥ max{2, 16j2 + 1
24
} assumed in Theorem

9.1.1. Moreover, we show ∆2
j(p(n)) > 0 with a similar combinatorial approach as

that for p(n). Gomez, Males, and Rolen [66] proved the positivity of ∆2
j(p(n)) using
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asymptotic estimate of the quotient p(n− j)/p(n) whereas our main objective is to
show that (∆2

j(p(n)))n≥2j (resp. (∆2
j(p(n)))n≥2j) can be enumerated by a non-empty

proper subset of P (n) (resp. of P (n)) so as to prove positivity of the respective
sequences.

We organize the chapter in the following way. Below we list all the theorems,
Theorems 9.1.3-9.1.9, with two corollaries Corollaries 9.1.7 and 9.1.10. The proofs
of Theorems 9.1.3-9.1.9 are given in Section 9.2.

Definition 9.1.2. For all positive integers n and j, define

X1
a(n, j) = A(n) \ A(n− j) and |X1

a(n, j)| = ∆1
j(a(n)),

X2
a(n, j) = X1

a(n, j) \X1
a(n− j, j) and |X2

a(n, j)| = ∆2
j(a(n)),

where |A(n)| := a(n).

In our context, A(n) is P (n), resp. P (n); consequently, we will considerX i
a(n, j) =

X i
p(n, j), resp. X i

a(n, j) = X i
p(n, j).

Theorem 9.1.3. For all positive integers n and j with n ≥ j,

X1
p (n, j) =

{
λ ∈ P (n) : 0 ≤ λ1 − λ2 ≤ j − 1

}
. (9.1)

Remark 9.1.4. Plugging in j = 1 into Theorem 9.1.3, X1
p (n, j) is described as the

set of non-unitary partitions of n as well as the set of partitions of n − 1 in which
the least part occurs exactly once [134, A002865].

Theorem 9.1.5. For all positive integers n and j with n ≥ 2j,

X2
p (n, j) =

{
λ ∈ X1

p (n, j) : 0 ≤ multλ(1) ≤ j − 1
}
. (9.2)

Remark 9.1.6. Plugging in j = 1 into Theorem 9.1.5, X2
p (n, j) is described as the

set of partitions of n− 2 with all parts > 1 and with the largest part occurring more
than once [134, A053445].

Corollary 9.1.7. For all positive integers n and j with n ≥ 2j,

∆2
j(p(n)) ≥ 0. (9.3)

Proof. For j = 1 and n ∈ {3, 5, 7}, X2
p (n, j) = ∅ and so ∆2

j(p(n)) = 0 and for n = 2,
∆2
j(p(n)) = 1. Next, if n = 2k with k ≥ 2, then λ = (k, k) ∈ X2

p (2k, 1), and if
n = 2k + 1 with k ≥ 4,

λ =

(⌈
2k + 1

3

⌉
,

⌈
2k + 1

3

⌉
, (2k + 1)− 2

⌈
2k + 1

3

⌉)
∈ X2

p (2k + 1, 1),
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as (2k + 1) − 2

⌈
2k + 1

3

⌉
> 1 for all k ≥ 4. So, ∆2

1(p(n)) ≥ 0 for all n ≥ 2j with

j = 1.
Finally, for j ≥ 2 and n = 2m ≥ 2j, observe that λ = (m,m) ∈ X2

p (n, j) and for
n = 2m+ 1 > 2j, λ = (m+ 1,m) ∈ X2

p (n, j). Therefore, ∆2
1(p(n)) > 0 for all n ≥ 2j

with j ≥ 2.

Theorem 9.1.8. For all positive integers n and j with n ≥ j,

X1
p (n, j) =

{
λ ∈ P (n) : 0 ≤ λ1 − λ2 ≤ j − 1 and λ1, λ2 may be overlined

}
∪
{
λ ∈ P (n) : λ1 − λ2 = j and λ2 is overlined

}
.

(9.4)

Theorem 9.1.9. For all positive integers n and j with n ≥ 2j,

X2
p (n, j) =

{
λ ∈ X1

p (n, j) : 0 ≤ multλ(1) ≤ j − 1 and 0 ≤ multλ(1) ≤ 1
}
. (9.5)

Corollary 9.1.10. For all positive integers n and j with n ≥ 2j,

∆2
j(p(n)) > 0. (9.6)

Proof. For j = 1 and n = 2, ∆2
j(p(n)) = 1. For j ≥ 1, n = 2k ≥ 2j with k ∈ Z≥2,

λ = (k, k) ∈ X2
p (n, j) and when n = 2k + 1 > 2j with k ∈ Z≥1, λ = (k + 1, k) ∈

X2
p (n, j). This concludes the proof.

9.2 Proofs of Theorems 9.1.3-9.1.9

Proof of Theorem 9.1.3: For all positive integers n, j with n ≥ j, we define an
injective map i1 : P (n− j) −→ P (n) by

λ = (λ1, λ2, . . . , λr) 7→ i1(λ) = (λ1 + j, λ2, . . . , λr). (9.7)

It is immediate that i1(λ) ∈ P (n), and the image set can be described as

=(i1) =
{
π ∈ P (n) : π1 − π2 ≥ j

}
.

Note that i1 is an injective map: for any two partitions, say, for λ, µ ∈ P (n − j),
there are two possible cases, either `(λ) = `(µ) or `(λ) 6= `(µ). When `(λ) 6= `(µ),
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`(i1(λ)) 6= `(i1(µ)) and therefore i1 is injective. If `(λ) = `(µ), then i1(λ) = i1(µ)
immediately implies that λm = µm for all 1 ≤ m ≤ `(λ). Hence,

P (n) \ i1(P (n− j)) =
{
π ∈ P (n) : 0 ≤ π1 − π2 ≤ j

}
= X1

p (n, j).

Proof of Theorem 9.1.5: For all positive integers n, j with n ≥ 2j, we first define
an injective map i2 : X1

p (n− j, j) −→ X1
p (n, j) by

λ = (λ1, λ2, . . . , λr) 7→ i2(λ) = (λ1, λ2, . . . , λr) ∪ (1, 1, . . . , 1︸ ︷︷ ︸
j times

). (9.8)

Now i2(λ) ∈ X1
p (n, j) and consequently,

=(i2) =
{
π ∈ X1

p (n, j) : multπ(1) ≥ j
}
.

Clearly, i2 is an injective map, since we adjoin the partition of j with all parts being
1 to any partition λ ∈ X1

p (n− j, j). Therefore,

X1
p (n, j) \ i2(X1

p (n− j, j)) =
{
π ∈ X1

p (n, j) : 0 ≤ multπ(1) ≤ j − 1
}

= X2
p (n, j).

Proof of Theorem 9.1.8: For all positive integers n, j with n ≥ j, we define an
injective map i1 : P (n− j) −→ P (n) by

λ = (λ1, λ2, . . . , λr) 7→ i1(λ) = (λ1 + j, λ2, . . . , λr) ∈ P (n). (9.9)

Here we consider two separate cases depending on whether λ1 = λ2 or λ1 6= λ2.
For λ1 = λ2, we observe that only the first occurence of λ1 can be overlined and

the image of i1 is given by

=(i1) =
{
π ∈ P (n) : π1 − π2 = j and π2 is not overlined

}
.

For the other case λ1 6= λ2,

=(i1) =
{
π ∈ P (n) : π1 − π2 ≥ j and π1, π2 may be overlined

}
.

Clearly, i1 is an injective map in each of the cases. Therefore

P (n) \ i1(P (n− j)) =
{
π ∈ P (n) : 0 ≤ π1 − π2 ≤ j − 1 and π1, π2 may be overlined

}
∪
{
π ∈ P (n) : π1 − π2 = j and π2 is overlined

}
=X

1

p(n, j).
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Proof of Theorem 9.1.9: For all positive integers n, j with n ≥ 2j, we define an

injective map i2 : X
1

p(n− j, j) −→ X
1

p(n, j) by

λ = (λ1, λ2, . . . , λr) 7→ i2(λ) = (λ1, λ2, . . . , λr) ∪ (1, 1, . . . , 1︸ ︷︷ ︸
j times

) ∈ X1

p(n, j). (9.10)

Consequently,

=(i2) =
{
π ∈ X1

p (n, j) : multπ(1) ≥ j
}
.

Note that i2 is an injective map as we adjoin the overpartition of j with all parts

being 1 to any overpartition λ ∈ X1

p(n− j, j). Therefore,

X
1

p(n, j) \ i2(X
1

p(n− j, j)) =
{
π ∈ X1

p (n, j) : 0 ≤ multπ(1) ≤ j − 1 and 0 ≤ multπ(1) ≤ 1
}

= X
2

p(n, j),

since if 1 is a part of an overpartition, say π ∈ P (n), then according to the definition
0 ≤ multπ(1) ≤ 1.
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Chapter 10

Parity bias of parts in partitions
and restricted partitions

Let po(n) (resp. pe(n)) denote the number of partitions of n with more odd parts
(resp. even parts) than even parts (resp. odd parts). Recently, Kim, Kim and
Lovejoy proved that po(n) > pe(n) for all n > 2 and conjectured that do(n) > de(n)
for all n > 19 where do(n) (resp. de(n)) denote the number of partitions into distinct
parts having more odd parts (resp. even parts) than even parts (resp. odd parts). In
this chapter we provide combinatorial proofs for both the result and the conjecture
of Kim, Kim and Lovejoy. In addition, we show that if we restrict the smallest part
of the partition to be 2, then the parity bias is reversed. That is, if qo(n) (resp.
qe(n)) denote the number of partitions of n with more odd parts (resp. even parts)
than even parts (resp. odd parts) where the smallest part is at least 2, then we have
qo(n) < qe(n) for all n > 7. We also look at some more parity biases in partitions
with restricted parts.

10.1 Parity on parts of integer partitions

In the theory of partitions, inequalities arising between two classes of partitions have a
long tradition of study, for instance Alder’s conjecture [4] and the Ehrenpreis problem
[6] are the most famous examples in this direction. In recent years there have been
a number of results about partition inequalities. For instance, work in this direction
has been done by McLaughlin [105], Chern, Fu, and Tang [43], Berkovich and Uncu
[23] among others. Very recently, Kim, Kim, and Lovejoy [85] have given interesting
inequalities which show bias in parity of the partition functions. Further results on
parity bias have been found by Kim and Kim [84], Chern [42], and [20]. Proofs of
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such results employ a wide range of techniques ranging from q-series methods, to
combinatorial constructions and maps to classical asymptotic analysis. By parity
bias we mean the tendency of partitions to have more parts of a particular parity
than the other.

Let po(n) (resp. pe(n)) denote the number of partitions of n with more odd parts
(resp. even parts) than even parts (resp. odd parts). Kim, Kim, and Lovejoy [85]
proved that po(n) > pe(n) and conjectured that do(n) > de(n) for all n > 19 where
do(n) (resp. de(n)) denote the number of partitions into distinct parts having more
odd parts (resp. even parts) than even parts (resp. odd parts). The primary goal of
the present chapter is to prove these two inequalities combinatorially.

In fact, our method can be amended to prove other results where biases in parity
are found for restricted partitions. If qo(n) (resp. qe(n)) denote the number of
partitions of n with more odd parts (resp. even parts) than even parts (resp. odd
parts) where the smallest part is at least 2, then we have qo(n) < qe(n) for n > 7 (see
Theorem 10.1.5 below). These parity biases seems to also occur for more restricted
partition functions and we also explore some of these themes towards the end with
a few conjectures.

We define a partition λ of a non-negative integer n to be an integer sequence
(λ1, . . . , λ`) such that λ1 ≥ λ2 ≥ · · · ≥ λ` > 0. We say that λ is a partition of n,
denoted by λ ` n and

∑`
i=1 λi = n. The set of partition of n is denoted by P (n)

and |P (n)| = p(n). For λ ` n, we define a(λ) to be the largest part of λ, `(λ) to
be the total number of parts of λ and multλ(λi) := mi to be the multiplicity of the
part λi in λ. We also use λ = (λm1

1 . . . λm`` ) as an alternative notation for partition.
For λ ` n with λ = (λ1, . . . , λ`) and µ ` m with µ = (µ1, . . . , µ`′ ), define the union
λ ∪ µ ` m + n to be the partition with parts {λi, µj} arranged in non-increasing
order. For a partition λ ` n, we split λ into λe and λo respectively into even and
odd parts; i.e., λ = λe ∪ λo. We denote by `e(λ) (resp. `o(λ)) to be the number of
even parts (resp. odd parts) of λ and `(λ) = `e(λ) + `o(λ).

The following sets of partitions are of interest in this chapter.

Definition 10.1.1.

D(n) := {λ ∈ P (n) : multλ(λi) = 1 for all i},
Pe(n) := {λ ∈ P (n) : `e(λ) > `o(λ)},
Po(n) := {λ ∈ P (n) : `o(λ) > `e(λ)},
De(n) := Pe(n) ∩D(n),

Do(n) := Po(n) ∩D(n),

Q(n) := {λ ∈ P (n) : λi 6= 1 for all i},
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Qe(n) := {λ ∈ Q(n) : `e(λ) > `o(λ)},
Qo(n) := {λ ∈ Q(n) : `o(λ) > `e(λ)},

DQe(n) := Qe(n) ∩D(n),

and DQo(n) := Qo(n) ∩D(n).

Definition 10.1.2. For all the sets defined above, their cardinalities will be denoted
by the lower case letters. For instance, |Pe(n)| = pe(n), |DQe(n)| = dqe(n) and so
on.

Now, we state formally the main results proved in this chapter.

Theorem 10.1.3 (Theorem 1, [85]). For all positive integers n 6= 2, we have

po(n) > pe(n).

Theorem 10.1.4 (Conjectured, [85]). For all positive integers n > 19, we have

do(n) > de(n).

Theorem 10.1.5. For all positive integers n > 7, we have

qo(n) < qe(n).

For a nonempty set S ( Z≥0, define

P S
e (n) := {λ ∈ Pe(n) : λi /∈ S}

and P S
o (n) := {λ ∈ Po(n) : λi /∈ S}.

Consequently, denote the number of partitions in P S
e (n) (resp. P S

o (n)) by pSe (n)
(resp. pSo (n)). The above definition leads us to the following results that describes
not only the parity of parts but also its arithmetic by putting a constrain on its
support.

Theorem 10.1.6. For all n ≥ 1 we have

p{2}o (n) > p{2}e (n).

Theorem 10.1.7. If S = {1, 2}, then for all integers n > 8, we have

pSo (n) > pSe (n).
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Before we move on further, let us describe the fundamental principle behind
proofs of Theorems 10.1.3-10.1.7. Let X and Y be two given sets and our goal is
to prove that |Y | > |X|. We choose a subset X0 ( X) and define an injective
map f : X0 → Y . Then to prove |Y | > |X|, it is enough to prove for a suitable
subset Y0  Y \ f(X0) with |Y0| > |X \X0|. Throughout this chapter, we follow the
notation x 7→ y instead of writing f(x) = y when the map f is understood from the
context.

The rest of the chapter is organized as follows: in Section 10.2 we give a com-
binatorial proof of the result of Kim, Kim and Lovejoy [85], in Section 10.3 we give
a proof of the conjecture of Kim, Kim and Lovejoy [85], in Section 10.4 we prove
reverse parity bias as stated in Theorem 10.1.5, Section 10.5 presents the proofs of
Theorems 10.1.6 and 10.1.7, and finally in Section 10.6 we present a very short dis-
cussion drawing on Section 10.5, by proposing further problems. The proofs of two
preliminary lemmas (cf. Lemmas 10.2.1 and 10.2.2) are given in Section 10.7.

10.2 Proof of po(n) > pe(n)

We begin by presenting the following two lemmas, used later in the proof of Theorem
10.1.3. For proofs, we refer to Appendix 10.7.

Lemma 10.2.1. For all even positive integer n with n ≥ 14, we have

n−6
2∑

k=1

⌊n− 2k − 2

4

⌋
> 1 +

bn−2
6
c∑

k=1

⌊n− 6k + 2

4

⌋
+

bn−6
6
c∑

k=1

⌊n− 6k − 2

4

⌋
.

Lemma 10.2.2. For all odd positive integer n with n ≥ 11, we have

n−5
2∑

k=1

⌊n− 2k − 1

4

⌋
> 1 +

⌊n− 4

4

⌋
+

bn−5
6
c∑

k=1

⌊n− 6k − 1

4

⌋
+

bn−9
6
c∑

k=1

⌊n− 6k − 5

4

⌋
.

Let

G0
e(n) := {λ ∈ Pe(n) : `e(λ)− `o(λ) = 1 and a(λ) ≡ 0 (mod 2)},

G0
e(n) := {λ ∈ G0

e(n) : λ3 ≥ 3},
G1
e(n) := {λ ∈ Pe(n) : `e(λ)− `o(λ) = 1 and a(λ) ≡ 1 (mod 2)},

G2
e(n) := {λ ∈ Pe(n) : `e(λ)− `o(λ) ≥ 2},

and Ge(n) := G1
e(n) ∪ G2

e(n).
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We split the set Ge(n) into the parity of length of partition as Ge(n) = Ge,0(n) ∪
Ge,1(n) with Ge,0(n) = {λ ∈ Ge(n) : `(λ) ≡ 0 (mod 2)}, Ge,1(n) = {λ ∈ Ge(n) :
`(λ) ≡ 1 (mod 2)} and let Ge(n) := Ge,0(n) ∪ Ge,1(n) ∪G0

e(n). Therefore,

Pe(n) \Ge(n) = {λ ∈ G0
e(n) : 0 ≤ λ3 ≤ 2}. (10.1)

We construct a map f : Ge(n)→ Po(n) by defining maps f |Ge,0(n) = f1, f |Ge,1(n) =
f2 and f |G0

e(n) = f3 such that {fi}1≤i≤3 are injective with the following properties

• f1(Ge,0(n)) ∩ f2(Ge,1(n)) = ∅,

• f1(Ge,0(n)) ∩ f3(G0
e(n)) = ∅, and

• f2(Ge,1(n)) ∩ f3(G0
e(n)) = ∅,

so as to conclude the map f is injective. Then we will choose a subset Po(n)  
Po(n) \ f(Ge(n)) with |Po(n)| > |Pe(n) \Ge(n)|.

Let λ ∈ Ge,0(n) with λe = (λe1 , . . . , λek) and λo = (λo1 , . . . , λom) where k +
m = `(λ). Since λ ∈ Ge,0(n), `(λ) = 2r for some r ∈ Z>0 and k > r because,
k −m ≥ 1 implies 2k ≥ k +m+ 1 = 2r + 1.

We define f1 : Ge,0(n)→ Po(n) by f1(λ) := µ with

µe = ((λo1 + 1), . . . , (λom + 1))

and
µo = ((λe1 + 1), . . . , (λek−r + 1), (λek−r+1

− 1), . . . , (λek − 1)).

Here we note that µ ∈ P (n) and f1 reverses the parity of parts; i.e., for λ with k even
and m odd parts, we get f1(λ) = µ with k odd and m even parts and µ ∈ Po(n).
Suppose for λ

′ 6= λ
′′
(∈ Ge,0(n)) with `(λ

′
) = `(λ

′′
), we have µ

′
= f1(λ

′
) = f1(λ

′′
) =

µ
′′
. Then `e(λ) = `e(λ

′′
) and so, `o(λ) = `o(λ

′′
). Now, since λ

′
and λ

′′
being distinct,

by the definition of f1 we have at least a tuple (i, j) ∈ Z>0 ×Z>0 such that µ
′
i 6= µ

′′
j .

Next, we consider the case when λ
′ 6= λ

′′
(∈ Ge,0(n)) with `(λ

′
) 6= `(λ

′′
) and it is

immediate that `(µ
′
) 6= `(µ

′′
) and therefore, µ

′ 6= µ
′′
. So, f1 is an injective map.

For λ ∈ Ge,1(n) with λe = (λe1 , . . . , λek) and λo = (λo1 , . . . , λom) where k + m =
`(λ) = 2r + 1 for some r ∈ Z>0. Here we note that, k > r and k − m ≥ 3 but
k − m = 1 holds only when a(λ) is odd, because k = m + 1 and a(λ) is even
implies that λ ∈ G0

e(n). We exclude the condition k = m + 2 as it contradicts that
k +m = 2r + 1.

We define f2 : Ge,1(n)→ Po(n) with f2(λ) := µ, where

µe =

{
((λo1 + 1), . . . , (λom + 1)) ∪ (λe1 + 2) if a(λ) is even,

((λo2 + 1), . . . , (λom + 1)) if a(λ) is odd,
(10.2)
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and

µo =

{
((λe2 + 1), . . . , (λek−r−1

+ 1), (λek−r − 1), . . . , (λek − 1)) if a(λ) even,

((λe1 + 1), . . . , (λek−r−1
+ 1), (λek−r − 1), . . . , (λek − 1)) ∪ (λo1 + 2) otherwise.

(10.3)
For a(λ) even,

`o(µ)− `e(µ) = k − 1− (m+ 1) = k −m− 2 ≥ 1

and for a(λ) odd,

`o(µ)− `e(µ) = k + 1− (m− 1) = k −m+ 2 ≥ 3.

Hence, µ ∈ Po(n) and by similar argument as give before, one can show that f2 is
injective.

Next, for λ ∈ G0
e(n) with λ = (λ1, . . . , λ`), we define f3 : G0

e(n)→ Po(n) by

f3(λ) = µ = ((λ1 + 1), λ4, . . . , λ`) ∪ ((λ2 − 2), (λ3 − 2)) ∪ (2, 1).

Independent of whether λ2 and λ3 are odd or even, we can observe that `o(µ)−`e(µ) =
1 and a(µ) = λ1 + 1 is odd. By definition, f3 is an injective map. Next, we show
that images of {fi}1≤i≤3 are mutually disjoint by considering the following cases

1. By definition of the maps given before, f1(Ge,0(n))  P 0
o (n) where

P 0
o (n) := {µ ∈ Po(n) : `(µ) ≡ 0 (mod 2)}

and f2(Ge,1(n))  P 1
o (n) with

P 1
o (n) := {µ ∈ Po(n) : `(µ) ≡ 1 (mod 2)}.

So, f1(Ge,0(n)) ∩ f2(Ge,1(n)) = ∅.

2. For λ ∈ Ge,0(n) with `e(λ) − `o(λ) ≥ 2, we have f1(λ) = µ ∈ Po(n) with
`o(µ)− `e(µ) ≥ 2 and for λ ∈ Ge,0(n) with `e(λ)− `o(λ) = 1, f1(λ) = µ ∈ Po(n)
with `o(µ)− `e(µ) = 1 but then a(µ) = λ1 + 1 is even. Considering λ ∈ G0

e(n),
f3(λ) = µ ∈ Po(n) with a(µ) = µ1 is odd and `o(µ) − `e(µ) = 1. Therefore,
f1(Ge,0(n)) ∩ f3(G0

e(n)) = ∅.

3. Let us consider λ ∈ Ge,1(n) with a(λ) is even and `e(λ) − `o(λ) = 3. Then
f2(λ) = µ ∈ Po(n) with a(µ) is even and `o(µ)−`e(µ) = 1. For `e(λ)−`o(λ) ≥ 4,
we have f2(λ) = µ with `o(µ) − `e(µ) ≥ 2. Moreover, if a(λ) is odd then it is
immediate that `o(µ)− `e(µ) ≥ 3 and consequently, f2(Ge,1(n)) ∩ f3(G0

e(n)) =
∅. So, the map f : Ge(n)→ Po(n) is injective.
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For µ ∈ Po(n) with its odd component µo = (µo1 , . . . , µos), we define

Po(n) := {µ ∈ Po(n) : `e(µ) = 2 and µoi = 1 for all 1 ≤ i ≤ s}.

By the definition of f , it is clear that Po(n)  Po(n) \ f(Ge(n)). Now, it remains to
show that |Po(n)| > |Pe(n) \Ge(n)|.

For n even and for λ ∈ Po(n), we have `o(λ) = 2k+ 2 for some k ∈ Z>0. Here we
observe that

|{λ ∈ P (n) : λ1 + λ2 = n;λ1, λ2 both even}| =
⌊n

4

⌋
(10.4)

and

|{λ ∈ P (n) : λ1 + λ2 = n;λ1 even, λ2 odd and λ2 ∈ Z≥3}| =
⌊n− 3

4

⌋
. (10.5)

Since, λ ∈ Po(n) with n even positive integer and `o(λ) = 2k + 2, for each k ∈ Z>0,
then by (10.4),

|{λ ∈ Po(n) : λ1 + λ2 + (2k + 2)× 1 = n;λ1, λ2 both even}| =
⌊n− 2k − 2

4

⌋
(10.6)

and 1 ≤ k ≤ n− 6

2
because k maximizes only when both λ1 and λ2 minimum; i.e.,

only the instance 2 + 2 + (2k + 2) × 1 = n which implies k =
n− 6

2
. Therefore we

have,

|Po(n)| =
n−6
2∑

k=1

⌊n− 2k − 2

4

⌋
. (10.7)

Similarly, for n odd, we have `o(λ) = 2k + 1 with 1 ≤ k ≤ n− 5

2
and

|{λ ∈ Po(n) : λ1 + λ2 + (2k + 1)× 1 = n;λ1, λ2 even}| =
⌊n− 2k − 1

4

⌋
. (10.8)

Consequently,

|Po(n)| =
n−5
2∑

k=1

⌊n− 2k − 1

4

⌋
. (10.9)

Now for n even we will show that

|Pe(n) \Ge(n)| = 1 +

bn−2
6
c∑

k=1

⌊n− 6k + 2

4

⌋
+

bn−6
6
c∑

k=1

⌊n− 6k − 2

4

⌋
. (10.10)
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We interpret the set Pe(n) \ Ge(n) as a disjoint union of its three proper subsets
given by Pe(n) \Ge(n) = A1 ∪ A2 ∪ A3 where,

A1 = {λ ∈ Pe(n) \Ge(n) : 0 ≤ λ3 ≤ 1}, A2 =
⋃
k≥1

A2,k, and A3 =
⋃
k≥1

A3,k;

with

A2,k = {λ = (λ1λ222k−112k) ` n : λ1 and λ2 even},
A3,k = {λ = (λ1λ222k12k−1) ` n : λ1 even and λ2 odd}.

(10.11)

Next, we explicitly describe the sets and will derive their cardinality by separating
into three cases.

Case 1(E): We observe that |A1| = 1 because we have only one possibility
(λ1, λ2, λ3) = (λ1, 0, 0). We reject the other three possibilities; i.e., (λ1, λ2, λ3) =
(λ1, 0, 1) as λ2 ≥ λ3, (λ1, λ2, λ3) = (λ1, 1, 0) as n even and (λ1, λ2, λ3) = (λ1, 1, 1) as
λ ∈ Pe(n) \Ge(n). Next, we look at the subset of A1, say A1,≥2 := {λ ∈ A1 : λ2 ≥ 2}
and note that A1,≥2 = 0∅. This is because for λ ∈ A1,≥2, there are altogether four
possibilities for λ3 ∈ {0, 1}.
For λ3 = 0, the choice (λ1, λ2, λ3) = (λ1, λ2, 0) and λ2 is even is impossible as
λ ∈ Pe(n) \ Ge(n) and if λ2 is odd, again an impossible option since n is even.
Whereas for λ3 = 1, the choice (λ1, λ2, λ3) = (λ1, λ2, 1) and λ2 is even is impossible
as n is even and if λ2 is odd, again an impossible option since λ ∈ Pe(n) \Ge(n).

Case 2(E): By (10.4),

|A2,k| =
⌊n− 6k + 2

4

⌋
(10.12)

and 1 ≤ k ≤ bn−2
6
c because k maximizes only when both λ1 and λ2 minimum; i.e.,

the instance 2 + 2 + (2k−1)×2 + (2k)×1 = n which implies k ≤ bn−2
6
c. By (10.12),

A2 =

bn−2
6
c⋃

k=1

A2,k and |A2| =
bn−2

6
c∑

k=1

⌊n− 6k + 2

4

⌋
. (10.13)

Case 3(E): From (10.5), it follows that

|A3,k| =
⌊(n− 6k + 1)− 3

4

⌋
=
⌊n− 6k − 2

4

⌋
(10.14)

and 1 ≤ k ≤ bn−6
6
c because k maximizes only when both λ1 and λ2 minimum; i.e.,
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the instance 4 + 3 + (2k)×2 + (2k−1)×1 = n which implies k ≤ bn−6
6
c. By (10.14),

A3 =

bn−6
6
c⋃

k=1

A3,k and |A3| =
bn−6

6
c∑

k=1

⌊n− 6k − 2

4

⌋
. (10.15)

By Case 1(E), (10.13) and (10.15) we have (10.10).
For all n odd integers greater equal 9, we will show that

|Pe(n) \Ge(n)| = 1 +
⌊n− 4

4

⌋
+

bn−5
6
c∑

k=1

⌊n− 6k − 1

4

⌋
+

bn−9
6
c∑

k=1

⌊n− 6k − 5

4

⌋
. (10.16)

Similarly as before, we write Pe(n) \ Ge(n) as a disjoint union of its four proper
subsets given by Pe(n) \Ge(n) = B0 ∪B1 ∪B2 ∪B3 where,

B0 = {λ = (λ1, λ2, 1) ∈ Pe(n) \Ge(n) : λ2 ≥ 4},
B1 = {λ ∈ Pe(n) \Ge(n) : 0 ≤ λ2 ≤ 2 and 0 ≤ λ3 ≤ 1},

B2 =
⋃
k≥1

B2,k, and B3 =
⋃
k≥1

B3,k;

with

B2,k = {λ = (λ1λ222k, 12k+1) ` n : λ1 and λ2 even},
B3,k = {λ = (λ1λ222k+112k) ` n : λ1 even and λ2 odd}.

(10.17)

Case 1(O): For λ = (λ1, λ2, 1) ∈ B0 and n is odd, it follows that both λ1 and λ2

are even. Therefore minimal choice for n is 9 because otherwise λ1 ≥ λ2 ≥ 4 with
the constraint that both λ1 and λ2 even would be an impossibility in such context.
Moreover, we can observe that

|B0| =
⌊n− 4

4

⌋
. (10.18)

Case 2(O): We observe that |B1| = 1 because we have only one possibility
(λ1, λ2, λ3) = (λ1, 2, 1). We reject the other three possibilities; i.e., (λ1, λ2, λ3) =
(λ1, 0, 1) as λ2 ≥ λ3, (λ1, λ2, λ3) = (λ1, 0, 0) and (λ1, λ2, λ3) = (λ1, 2, 0) as n odd,
(λ1, λ2, λ3) = (λ1, 1, 0) and (λ1, λ2, λ3) = (λ1, 1, 1) as λ ∈ Pe(n) \Ge(n).

Case 3(O): By (10.4),

|B2,k| =
⌊n− 6k − 1

4

⌋
(10.19)
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and 1 ≤ k ≤ bn−5
6
c because k maximizes only when both λ1 and λ2 minimum; i.e.,

the instance 2 + 2 + (2k)×2 + (2k+ 1)×1 = n which implies k ≤ bn−5
6
c. By (10.19),

B2 =

bn−5
6
c⋃

k=1

B2,k and |B2| =
bn−5

6
c∑

k=1

⌊n− 6k − 1

4

⌋
. (10.20)

Case 4(O): From (10.5), it follows that

|B3,k| =
⌊(n− 6k − 2)− 3

4

⌋
=
⌊n− 6k − 5

4

⌋
(10.21)

and 1 ≤ k ≤ bn−9
6
c because k maximizes only when both λ1 and λ2 minimum; i.e.,

the instance 4 + 3 + (2k+ 1)×2 + (2k)×1 = n which implies k ≤ bn−9
6
c. By (10.21),

B3 =

bn−9
6
c⋃

k=1

B3,k and |B3| =
bn−9

6
c∑

k=1

⌊n− 6k − 5

4

⌋
. (10.22)

By Case 2(O), (10.18), (10.20) and (10.22) we have (10.16).
Therefore, by Lemmas 10.2.1 and 10.2.2, |Po(n)| > |Pe(n) \ Ge(n)| for all n ≥

Z≥14∪{11, 13}. To conclude the proof, it remains to check for n ∈ {1, 3, 4, 5, 6, 7, 8, 9, 10, 12}
which we did by numerically checking in Mathematica.

10.3 Proof of do(n) > de(n)

Following the definitions in Section 10.2, set

H0
e (n) := G0

e(n) ∩D(n),

H0
e (n) := {λ ∈ H0

e (n) : `o(λ) > 1},
and He(n) := Ge(n) ∩D(n).

We split He(n) into He,0(n) = Ge,0(n)∩D(n) and He,1(n) = Ge,1(n)∩D(n). Similarly,
define the map f : He(n) → Do(n) by f |He,0(n) = f1 and f |He,1(n) = f2. Since
He(n) ( Ge(n), we conclude that the map f is injective by (10.2) and (10.3).

Now we are to show that do(n) − |f(He(n))| > de(n) − |He(n)| for all n > 31.
The subset Do(n) \ f(He(n)) contains different classes of partitions. One of which is

Do(n) := {λ ∈ Do(n) \ f(He(n)) : `o(λ)− `e(λ) = 1 and a(λ) ≡ 1(mod 2)}.
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We note that Do(n) may contain other classes of partitions depending on n is even
or odd.

For a partition λ ∈ H0
e (n), we split λ into its even component λe = (λe1 , λe2 , . . . , λem+1)

and λo = (λo1 , λo2 , . . . , λom) for some m ∈ Z≥2. Now, me make a transformation of
λ into λ∗ with

λ∗ = (λe1 + λo1 , λe2 + λo2) ∪ (λe3 , λe4 , . . . , λem+1) ∪ (λo3 , λo4 , . . . , λom) ∈ Do(n).

We observe that two partitions, say λ, λ ∈ H0
e (n), where

λ = (λe1 , λe2 , . . . , λem+1) ∪ (λo1 , λo2 , . . . , λom)

and λ = (λe1 , λe2 , . . . , λem+1) ∪ (λo1 , λo2 , . . . , λom),

transform to a same partition, say µ ∈ Do(n) if and only if

λe1 − λe1 = λo1 − λo1 ≡ 0(mod 2) or/and λe2 − λe2 = λo2 − λo2 ≡ 0(mod 2).

If those cases arise we subtract some multiple of 2 from the greatest part of the
resultant partition and add the multiple of 2 to the other even parts which are present
in the partition, and continue this process till we have a repetition among the parts
of the partition. This process is injective by its definition, and we denote it by g. For
example, consider partitions λ = (12, 10, 6, 2)∪ (7, 3, 1) and λ = (10, 8, 6, 2)∪ (9, 5, 1)
in H0

e (41), then both λ and λ maps to the same partition µ = (19, 13, 6, 2, 1) ∈
Do(41). Consequently, by the process g, finally λ 7→ (19, 13, 6, 2, 1) whereas λ 7→
(17, 13, 8, 2, 1). As a trivial remark, H0

e (n) = ∅ for all positive even integers n ≤ 14,
since 6 + 4 + 2 + 3 + 1 = 16 is the least possible option.

Depending on the parity of n, it remains to analyze the left over set

H̃0
e (n) := {λ ∈ H0

e (n) : `e(λ)− `o(λ) = 1, `o(λ) ≤ 1 and a(λ) ≡ 0(mod 2)}, (10.23)

which is unmapped yet (after applying the map f and g).

For n to be an even positive integer, we observe that H̃0
e (n) consists of only one

partition (n). An even integer n can be expressed as a sum of two consecutive odd
integers if and only if n is divisible by 4. If n is divisible by 4, then for some definite
odd integer λo1 we get (λo1 , λo1 − 2) ∈ Do(n), which is not mapped yet. So we map
(n) to (λo1 , λo1 − 2). If n is not divisible by 4, then for some definite odd integer λo1
we get (λo1 , λo1 − 2, 2) ∈ Do(n), which is not mapped yet. So in this case we map
(n) to (λo1 , λo1 − 2, 2). Therefore, by some elementary observations we get that the
theorem is true for all even integer n > 6.
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Let n be odd. We rewrite (10.23) as

H̃0
e (n) := {λ ∈ H0

e (n) : `e(λ) = 2, `o(λ) = 1 and a(λ) ≡ 0(mod 2)}.

Write a partition λ ∈ H̃0
e (n) into its even component λe = (λe1 , λe2) and odd com-

ponent λo = (λo1). We split H̃0
e (n) into following three classes:

1. H̃0
e,1(n) := {λ ∈ H̃0

e (n) : λe2 = 2},

2. H̃0
e,2(n) := {λ ∈ H̃0

e (n) : λe2 ≥ 6}, and

3. H̃0
e,3(n) := {λ ∈ H̃0

e (n) : λe2 = 4}.

Now we consider the following three classes of partitions from the set of partitions,
say D̃o(n) ( Do(n) which have no preimage yet:

1. D̃o,1(n) := {π ∈ D̃o(n) : `(π) = 4 and πo1 − πo2 = 2},

2. D̃o,2(n) := {π ∈ D̃o(n) : `o(π) = 3 and πo1 − πo2 = 2}, and

3. D̃o,3(n) := {π ∈ D̃o(n) : `o(π) − `e(π) = 1, a(π) ≡ 0(mod 2) and πe1 − πo1 =
1 or 3}.

Now we construct an injective map from H̃0
e,1(n) to D̃o,1(n). Let λ = (λe1 , 2)∪(λo1) ∈

H̃0
e,1(n). Define a transformation S such that S(λ) = (λe1)∪ (λo1 + 1, 1). Now define

S∗ such that

S∗(S(λ)) =

{
S(λ) if λe1 ≡ 0(mod 4),

(λe1 − 2) ∪ (λo1 + 1, 3) if λe1 ≡ 2(mod 4).

Now define S∗∗ such that S∗∗(S∗(S(λ))) = (λo2 , λo2 − 2) ∪ (λo3) ∪ (λo1 + 1), where
λo2 + λo2 − 2 = λe1 or λe1 − 2, and λo3 = 1 or 3 accordingly. For example: (24, 5, 2)
maps to (13, 11, 6, 1) and (22, 7, 2) maps to (11, 9, 8, 3). This process is injective.

Our next objective is to embed the set H̃0
e,2(n) into a subset of D̃o(n) which is not

mapped till now. Define a transformation U such that U(λ) = ((λe1−3, 3) ∪ (λo1)) ∪
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(λe2 , 2) for λ ∈ H̃0
e,2(n). Associated with U , let us define U∗ in such a way that

U∗(U(λ)) =



U(λ) if λo1 6= 3 and λe1 − 3 6= λo1 ,

(λe1 − 3, 5, 1) ∪ (λe2 − 2, 2) if λo1 = 3,(
this transformation is impossible for n ≤ 17

)(
e.g. (10, 6, 3) 7→ (7, 5, 4, 2, 1)

)
((λe1 − 3, λo1 − 2) ∪ (5)) ∪ (λe2 − 2, 2) if λe1 − 3 = λo1 ,(
this transformation is impossible for n ≤ 25

)(
e.g. (12, 9, 6) 7→ (9, 7, 5, 4, 2)

)
((λe1 − 3, λo1 − 4) ∪ (5)) ∪ (λe2 − 2, 4) if λe1 − 1 = λo1 , λe2 6= 6,(
this transformation is impossible for n ≤ 29

)(
e.g. (12, 11, 8) 7→ (9, 7, 6, 5, 4)

)
((λe1 − 3, λo1 − 4) ∪ (3)) ∪ (6, 4) if λe1 − 1 = λo1 , and λe2 = 6.(
this transformation is impossible for n ≤ 23

)(
e.g. (10, 9, 6) 7→ (7, 6, 5, 4, 3)

)
Denote the resulting transformation U∗U by Ũ . Note that `(Ũ(λ)) = 5, where the

resulting partitions; i.e., images under Ũ , contains parts from {3, 5} and its smallest
even part from {2, 4}. For a partition λ ∈ H0

e (n) with `(λ) = 7, `(g(λ)) = 5. Now,

assume Ũ(λ) = g(µ) for some partition µ with `(µ) = 7. In the map g, after applying
the first transformation, the other transformations are applied on the even parts only
(if it necessary). If Ũ(λ) = g(µ), then we remove one of 2, 3, 4, or 5 (which one
exists in g(µ)) from g(µ) by applying similar transformation.

Now we compare the number of partitions in H̃0
e,3(n) with D̃o,2(n) and D̃o,3(n).

∣∣H̃0
e,3(n)

∣∣ =

⌊
n− 3

4

⌋
.

Let π = (πo1 , πo1 − 2, πo3) ∈ D̃o,2(n), and πo1 = 2k + 1. Then the least possible
value of k is given by

(2k + 1) + (2k − 1) ≥ 2{n− (2k + 1)− (2k − 1)}+ 6,

which implies k =
⌈
n+3

6

⌉
. So the total number of partitions in D̃o,2(n) is at least⌈

n−4k
4

⌉
, which is equal to

⌈
n
4
−
⌈
n+3

6

⌉⌉
. Any odd integer n is of the form 12`+r, where

r = 1, 3, 5, 7, 9, or 11. Calculating for all the six cases, we get the total number of
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partitions in this class is

=

{⌊
n
12

⌋
, if n 6= 12`+ 9,⌊

n
12

⌋
+ 1, if n = 12`+ 9.

Now,
⌊
n−3

4

⌋
−

{⌊
n
12

⌋
, if n 6= 12`+ 9,⌊

n
12

⌋
+ 1, if n = 12`+ 9.

=
⌊
n
6

⌋
− 1,

⌊
n
6

⌋
, or

⌊
n
6

⌋
+ 1.

It remains to estimate a lower bound of
∣∣D̃o,3(n)

∣∣. Let π = (πo1 , πo2 , πo3) ∪
(πe1 , πe2) ∈ D̃o,3(n). The greatest odd part πo1 is the largest possible value if π
contains 3, 1 and 2. So the largest possible value of πo1 is n−9

2
or n−7

2
if n ≡ 3

(mod 4) or n ≡ 1 (mod 4) respectively. The smallest possible value of πo1 is greater
than

⌊
n
5

⌋
. When πo1 is not the largest or the smallest possible value, then for each

possible value of πo1 , we get at least 6 partitions. So total number of partitions is
greater than

6× 1

2
×
{
n− 9

2
− 1−

(⌊
n

5

⌋
+ 1 + 1

)}
≥ 3×

{
n− 9

2
− n

5
− 3

}
=

9(n− 25)

10
.

Now,
⌊

9(n−25)
10

⌋
>
⌊
n
6

⌋
+ 1 for all odd positive integers n > 31.

This proves the theorem for all n > 31. We can verify the result numerically for
19 < n ≤ 31.

10.4 Proof of qo(n) < qe(n): the reverse case

Define
go(λ) = `o(λ)− `e(λ) for λ ∈ Po(n)

and
ge(π) = `e(π)− `e(π) for π ∈ Pe(n).

Let us split Qo(n) into the following two disjoint subsets, defined by

I1
o (n) := {λ ∈ Qo(n) : go(λ) = 1 and a(λ) ≡ 1(mod 2)}

and
Io(n) := Qo(n) \ I1

o (n).

Then the map f : Io(n) → Qe(n) defined by the restriction maps f1 and f2 (cf.

(10.2)-(10.3)) is injective and consequently, f(Io(n)) := Ĩe(n) ( Qe(n).
For λ = (λ1, λ2, λ3, . . . , λm) ∈ I1

o (n), we split I1
o (n) into
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1. I1
o,1(n) := {λ ∈ I1

o (n) : λ3 ≥ 6}.

2. I1
o,2(n) :=

⋃5
t=2 I

1
o,2t(n), where I1

o,2t(n) := {λ ∈ I1
o (n) : λ3 = t}.

Define Ĩce(n) := Qe(n) \ Ĩe(n), and for π = (π1, π2, . . . , πs) ∈ Ĩce(n) with its even
component πe = (πe1 , πe2 , . . . , πek), we consider the following disjoint classes, where
n ≥ 21:

1. Ĩce,1(n) := {π ∈ Ĩce(n) : ge(π) = 1, a(π) ≡ 0(mod 2), and π1 6= π2}.

2. Ĩce,2(n) := {π ∈ Ĩce(n) : ge(π) = 1, a(π) ≡ 0(mod 2), and π1 = π2}.
Example: (4, 4, 3, 3, 3, 2, 2).

3. Ĩce,3(n) := {π ∈ Ĩce(n) : ge(π) = 1, a(π) ≡ 1(mod 2), and π1 − π2 ∈ {0, 1}}.
Example: (5, 5, 3, 2, 2, 2, 2) and (5, 4, 3, 3, 2, 2, 2).

4. Ĩce,4(n) := {π ∈ Ĩce(n) : `(π) = 2r and multπ(2) ≥ r + 1}.
Example: (4, 4, 3, 2, 2, 2, 2, 2).

5. Ĩce,5(n) := {π ∈ Ĩce(n) : `(π) = 2r + 1 and multπ(2) ≥ r + 2}.
Example: (7, 4, 2, 2, 2, 2, 2).

6. Ĩce,6(n) := {π ∈ Ĩce(n) : ge(π) = 2, `(π) ≡ 0(mod 2), and πe1 6= πe2}.
Example: (13, 8, 8, 7, 4, 2).

7. Ĩce,7(n) := {π ∈ Ĩce(n) : ge(π) = 3, `(π) ≡ 1(mod 2), and πe1 = πe2}.
Example: (13, 8, 8, 7, 4, 2, 2).

Now we define a map ψ1 : I1
o,1(n)→ Ĩce,1(n). For λ = (λ1, λ2, λ3, . . . , λm) ∈ I1

o,1(n),

ψ1(λ) := (λ1 + 1, λ2 − 4, λ3 − 4, λ4, . . . , λm) ∪ (4, 3),

and hence ψ1 is a well defined injective map.
For the rest of the proof, in a partition λ ` n, as a part x (resp. y) denotes 3 or 5
(resp. 2 or 4).
Now we construct injective maps on I1

o,2(n) by considering the following five cases.
Case 1: λ ∈ I1

o,22
(n).

This case is satisfied only when n is even. For λ = (λ1, λ2, 2) ∈ I1
o,22

(n), define

ψ2(λ) := π = (λ1 − λ2 + 2, 2, 2, . . . , 2) with multπ(2) = λ2.
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For example, (23, 5, 2) 7→ (20, 2, 2, 2, 2, 2). One can observe that the map ψ2 is
injective and

ψ2(I1
o,22

(n)) := Ĩ1
e,22

(n) ( Ĩce,4(n),

where

Ĩ1
e,22

(n) =

{
{π ∈ Ĩce,4(n) : π1 ≥ 2 and πj = 2 for all j > 1} if n ≡ 0(mod 4),

{π ∈ Ĩce,4(n) : π1 ≥ 4 and πj = 2 for all j > 1} if n ≡ 2(mod 4).

Case 2: λ ∈ I1
o,23

(n).

Subdivide I1
o,23

(n) :=
⋃3
t=1 I

1
o,23,t

(n) with

I1
o,23,1

(n) := {λ ∈ I1
o,23

(n) : λ2 ≡ 1(mod 2)},
I1
o,23,2

(n) := {λ ∈ I1
o,23

(n) : λ2 ≡ 0(mod 2) and λ1 6= 5},
and I1

o,23,3
(n) := {λ ∈ I1

o,23
(n) : λ2 ≡ 0(mod 2) and λ1 = 5}.

We define the map ψ3 : I1
o,23

(n)→ Ĩce(n) by ψ3|I1o,23,t (n) := ψ3,t for 1 ≤ t ≤ 3.

We take ψ3,1 := ψ2, given above and so,

Ĩ1
e,23,1

(n) := ψ3,1(I1
o,23,1

(n))

=
{
π ∈ Ĩce,4(n) : a(π) = πe1 ≥ 2 or 4,multπ(3) > 1, and πej = 2 for j > 1

}
.

For example, (23, 3, 3, 2, 2) 7→ (22, 3, 2, 2, 2, 2).
We note that for any λ ∈ I1

o,23,2
(n), λ = (λ1, λ2, 3, . . . , 3, 2, . . . , 2) with multλ(2) = r

and multλ(3) = r+1 for some r ∈ Z≥0. Define ψ3,2(λ) := π = (λ1−4, 3, . . . , 3, 2, . . . , 2)
with multπ(3) ≥ r + 1 and multπ(2) = 1

2
λ2 + 2. Consequently,

Ĩ1
e,23,2

(n) := ψ3,2(I1
o,23,2

(n))

=
{
π ∈ ∪5

k=4Ĩ
c
e,k(n) : a(π) = πo1 ≥ 3,multπ(3) > 1, and πei = 2 for i ≥ 1

}
.

For example, (21, 8, 3) 7→ (17, 3, 2, 2, 2, 2, 2, 2).
Similar as before, observe that for any λ ∈ I1

o,23,3
(n), λ = (5, 4, 3, 3, . . . , 3, 2, 2 . . . , 2)

with multλ(2) = r and multλ(3) = r + 1 for some r ∈ Z≥0. Define ψ3,3(λ) := π =
(3, 3, . . . , 3, 2, 2, . . . , 2) with multπ(3) = r + 2 and multπ(2) = r + 3. Consequently,

Ĩ1
e,23,3

(n) := ψ3,3(I1
o,23,3

(n))

=
{
π ∈ Ĩce,3(n) : multπ(3) = multλ(3) + 1 and multπ(2) = multλ(2) + 3

}
.
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For example, (5, 4, 3, 3, 2) 7→ (3, 3, 3, 2, 2, 2, 2).

Moreover,
⋂

1≤i≤3 Ĩ
1
e,23,i

(n) = ∅, for each i, {Ĩ1
e,23,i

(n)} ∩ Ĩ1
e,22

(n) = ∅; and also

{Ĩ1
e,23,i

(n)}1≤i≤3 are mutually disjoint with the images under the maps f and ψ1

considered before.
Case 3: λ ∈ I1

o,24
(n).

For each pair of (λ1, λ2), which exist, we get a unique partition. This is also satisfied
in the above two cases, but we have not considered this in the above two cases to
find different images. Now analyze the disjoint subsets of I1

o,24
(n), depending on λ2

is even or odd, defined as follows

I1
o,24,1

(n) := {λ ∈ I1
o,24

(n) : λ2 ≡ 1(mod 2) and `(λ) ≤ 5},
I1
o,24,2

(n) := {λ ∈ I1
o,24

(n) : λ2 ≡ 1(mod 2) and `(λ) > 5},
and I1

o,24,3
(n) := {λ ∈ I1

o,24
(n) : λ2 ≡ 0(mod 2)}.

When λ ∈ I1
o,24,1

(n), then the partitions are of the two forms: λ = (λ1, λ2, 4) or
λ = (λ1, λ2, 3) ∪ (4, y), where λ1 ≥ λ2 ≥ 5 are odds.
a) λ1 > 2λ2 + 3:

(λ1, λ2, 3)∪(4, y)
ψ4,1−−→


(624) ∪

(
λ1 + λ2 − 12

2
,
λ1 + λ2 − 12

2
, 3

)
if λ1 − λ2 ≡ 0(mod 4),

(63y) ∪

(
λ1 + λ2 − 14

2
,
λ1 + λ2 − 14

2
, 3

)
if λ1 − λ2 ≡ 2(mod 4),

and

(λ1, λ2, 4)
ψ4,1−−→


(6, 6, 4) ∪

(
λ1 + λ2 − 12

2
,
λ1 + λ2 − 12

2

)
if λ1 − λ2 ≡ 0(mod 4),

(6, 6, 6) ∪

(
λ1 + λ2 − 14

2
,
λ1 + λ2 − 14

2

)
if λ1 − λ2 ≡ 2(mod 4).

b) 2λ2 + 3 ≥ λ1 ≥ λ2 + 8:

(λ1, λ2, 3) ∪ (4, y)
ψ4,1−−→ (λ1 − λ2 − 4, 4, 4) ∪ (λ2, λ2, 3)

and (λ1, λ2, 4)
ψ4,1−−→ (λ1 − λ2 − 4, 4, 4) ∪ (λ2, λ2).
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c) λ2 + 8 > λ1: For λ2 > 5,

(λ1, λ2, 4)
ψ4,1−−→ (λ1 − 3, λ2 − 3, 2, 2, 2, 2, 2),

(λ1, λ2, 4, 4, 3)
ψ4,1−−→ (λ1 − 1, λ2 − 1, 3, 2, 2, 2, 2, 2),

and (λ1, λ2, 4, 3, 2)
ψ4,1−−→ (a− 3, b− 3, 3, 2, 2, 2, 2, 2, 2).

Whereas for the left over partitions are mapped as follows

(7, 5, 4, 3, 2)
ψ4,1−−→ (5, 4, 4, 4, 4),

(9, 5, 4, 3, 2)
ψ4,1−−→ (5, 4, 4, 4, 4, 2),

and (11, 5, 4, 3, 2)
ψ4,1−−→ (5, 4, 4, 4, 4, 4).

For λ ∈ I1
o,24,2

(n), can be written explicitly in the form

λ = (λ1, λ2, 4, 4, . . . , 4, 3, 3, . . . , 3, 2, . . . , 2),

with λ1, λ2 both odd, multλ(4) = s+ 1,multλ(2) = r, and multλ(3) = r+ s for some
r, s ∈ Z≥0 subject to the condition that r + s ≥ 2. Then

λ
ψ4,2−−→

{
(λ1, λ2, 3, 2, . . . , 2) if r + s ≡ 1 (mod 2),

(λ1, λ2, 2, . . . , 2) if r + s ≡ 0 (mod 2).

with

multψ4,2(λ)(2) =

{
2s+ 2 + 3 r+s−1

2
+ r if r + s ≡ 1 (mod 2),

2s+ 2 + 3 r+s
2

+ r if r + s ≡ 0 (mod 2).

For example (15, 7, 4, 3, 3, 3, 2, 2, 2) 7→ (15, 7, 3, 2, 2, 2, 2, 2, 2, 2, 2). By definition of
the map ψ4,2, these images are different from all the above images.
For λ ∈ I1

o,24,3
(n), can be expressed as λ = (λ1, λ2, 4, 4, . . . , 4, 3, 3, . . . , 3, 2, . . . , 2) with

λ1 odd, λ2 even, multλ(4) = s + 1,multλ(2) = r, and multλ(3) = r + s + 2 for some
r, s ∈ Z≥0. Then

λ =
ψ4,3−−→

{
(λ1, λ2, 3, 2, . . . , 2) if r + s ≡ 1 (mod 2),

(λ1, λ2, 2, . . . , 2) if r + s ≡ 0 (mod 2).

with

multψ4,3(λ)(2) =

{
2s+ 2 + 3 r+s+1

2
+ r if r + s ≡ 1 (mod 2),

2s+ 2 + 3 r+s+2
2

+ r if r + s ≡ 0 (mod 2).
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For example (13, 6, 4, 3, 3, 3, 2) 7→ (13, 6, 3, 2, 2, 2, 2, 2, 2). Moreover, the images under
the map ψ4,3 are different from all the above images.
Case 4: λ ∈ I1

o,25
(n).

λ = λe ∪ λo ∈ De(n) with `(λ) = 2r = k + m (m = `o(λ)), then λei 6= λej for all
1 ≤ i 6= j ≤ r −m+ 1 if λ has a preimage under the map f (defined by f1 and f2).
More precisely, λer−m 6= λer−m+1 . For example, (15, 12, 12, 12, 8, 8, 3, 3, 2, 2, 2, 2, 2, 2) ∈
De(n), but it has no preimage since λe4 = λe5 = 8. So, when `(λ) = (m + 2) + m,
then λe1 6= λe2 in order to have a preimage under f . As a conclusion, we see that

Ĩce,6(n) has no preimage yet.
Similarly as before, we further split I1

o,25
(n) depending on λ2 is even or odd, given by

I1
o,25,1

(n) := {λ ∈ I1
o,25

(n) : λ2 ≡ 1 (mod 2) and `(λ) > 5},
I1
o,25,2

(n) := {λ ∈ I1
o,25

(n) : λ2 ≡ 1 (mod 2) and `(λ) = 5},

and
I1
o,25,3

(n) := {λ ∈ I1
o,25

(n) : λ2 ≡ 0 (mod 2)}.

For λ ∈ I1
o,25,1

(n), we want to define a map, say ψ5,1 : I1
o,25,1

(n) → Ĩce,6(n). First, we
explicitly write such λ as

λ = λe ∪ λo := (λ1, λ2, 5, x, . . . , x) ∪ (λe1 , λe2 , . . . , λer),

where λei ∈ {4, 2} for 1 ≤ i ≤ r and r ∈ Z≥3 along with the property that λei = λej
for some 1 ≤ i 6= j ≤ r. Now define

λ
ψ5,1−−→

(λ1, x, . . . , x) ∪
(
λ̂e ∪

(
λei + λ2+1

2
, λej + λ2+1

2
, 4
))

if λ2 ≡ 3 (mod 4)

(λ1, x, . . . , x) ∪
(
λ̂e ∪

(
λei + λ2+3

2
, λej + λ2+3

2
, 2
))

if λ2 ≡ 1 (mod 4),

where λ̂e := (λe1 , . . . , λei−1
, λei+1

, λej−1
, λej+1

, . . . , λer). For example

(13, 9, 5, 4, 3, 2, 2) 7→ (13, 8, 8, 4, 3, 2).

The map ψ5,1 may not be necessarily one to one. Then by adding and subtracting
some multiples of 2 from the parts of the ψ5,1(λ) except the part a(ψ5,1(λ)), we can
map them to different partitions. For example, (9, 9, 5, 3, 2, 2, 2) and (9, 5, 5, 4, 4, 3, 2)
both transform into (9, 8, 8, 3, 2, 2). Then for one preimage we can change the image
to (9, 7, 6, 6, 2, 2).
When λ ∈ I1

o,25,2
(n), then n must be odd. Here partition λ is of three form:

(λ1, λ2, 5, 4, 4), (λ1, λ2, 5, 4, 2), and (λ1, λ2, 5, 2, 2). For each of these partitions, define

(λ1, λ2, 5, 4, 4)
ψ5,2−−→

{
(λ1 − 5, λ2 − 1, 2, 2, 2, 2, 2) ∪ (9) if λ1 ≥ λ2 + 4,

(λ1 − 5, λ2 − 5, 2, 2, 2, 2, 2, 2, 2) ∪ (9) if λ1 < λ2 + 4,
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(λ1, λ2, 5, 4, 2)
ψ5,2−−→

{
(λ1 − 5, λ2 − 1, 2, 2, 2, 2, 2) ∪ (7) if λ1 ≥ λ2 + 4,

(λ1 − 5, λ2 − 5, 2, 2, 2, 2, 2, 2, 2) ∪ (7) if λ1 < λ2 + 4,

and

(λ1, λ2, 5, 2, 2)
ψ5,2−−→

{
(λ1 − 5, λ2 − 1, 2, 2, 2, 2, 2) ∪ (5) if λ1 ≥ λ2 + 4,

(λ1 − 5, λ2 − 5, 2, 2, 2, 2, 2, 2, 2) ∪ (5) if λ1 < λ2 + 4.

For example (13, 9, 5, 4, 2) 7→ (82725) and (11, 9, 5, 4, 4) 7→ (9, 6, 4, 2, 2, 2, 2, 2, 2, 2).
Here, λ1− 5, λ2− 5 ≥ 4 for all n ≥ 31. If a partition λ has 3 parts which are greater
then equal to 3, then multψ5,2(λ)(2) ≥ 5 so as to belong to the Ĩce,4(n); i.e., ψ5,2 is an

injective map to Ĩce,4(n), for all n ≥ 31.
Consider λ ∈ I1

o,25,3
(n). Write λ = (λ1, 5, x, . . . , x) ∪ (λ2, y, . . . , y) with λ1 ≥ 7 odd,

λ2 ≥ 6 even, and total no. of x = total no. of y = r for some non-negative integer r.
a) If λ1 > 2λ2 + 3, then

λ
ψ5,3−−→

(7, 5, x, . . . , x) ∪
(
λ1−7

2
, λ1−7

2
, λ2, y, . . . , y

)
if λ1 ≡ 3 (mod 4),

(5, 5, x, . . . , x) ∪
(
λ1−5

2
, λ1−5

2
, λ2, y, . . . , y

)
if λ1 ≡ 1 (mod 4).

b) If 2λ2 +3 ≥ λ1 > λ2 +5, then λ
ψ5,3−−→ (λ1−λ2−5, 5, y, . . . , y)∪ (λ2, λ2, x, . . . , x, 2).

c) If λ1 = λ2 + 5, or λ2 + 3, then define

λ
ψ5,3−−→

{
(λ2 − 1, 5, x, . . . , x) ∪

(
(λ2 − 2) ∪ (6, y, . . . , y, 2)

)
if λ1 = λ2 + 5,

(λ2 − 1, 5, x, . . . , x) ∪ (λ2 − 2, 4, y, . . . , y, 2) if λ1 = λ2 + 3.

Here we exclude the partitions λ of the form (13, 5, x, . . . , x) ∪ (8, y, . . . , y), since
(13, 8, 5) maps to (7, 6, 6, 5, 2), and from (b) we see that (15, 6, 5) also maps to
(7, 6, 6, 5, 2).
d) It remains to consider the two left-over classes of partitions, given by

λ = (13, 5, x, . . . , x) ∪ (8, y, . . . , y)

and λ = (λ1, 5, x, . . . , x) ∪ (λ2, y . . . , y) with λ1 = λ2 + 1.

For these two classes of λ, define

(13, 5, x, . . . , x) ∪ (8, y, . . . , y)
ψ5,3−−→ (x, . . . , x) ∪ (12, 12, y, . . . , y, 2)

and (λ2 + 1, 5, x, . . . , x) ∪ (λ2, y . . . , y)
ψ5,3−−→ (x, . . . , x) ∪ (λ2, λ2, 6, y, . . . , y).

294



If in two partitions of the form (λ2 + 1, 5, x, . . . , x) ∪ (λ2, y, . . . , y) the part λ2 is
different, then the partitions are not equal. Again, when λ2 is equal in two such
partitions, then the partitions are different if and only if the combination of x’s and
y’s are different. The same is true for the partitions of the form (13, 5, x, . . . , x) ∪
(8, y, . . . , y). So the map gives us different images, which are in the subset Ĩce,7(n).

By similar argument to the partitions of the Ĩce,6(n), we observe that Ĩce,7(n) have also
no preimage under f .
Case 5: The partition λ = (n).
If n is odd, then the partition λ ∈ Qo(n), which has not mapped yet. Let

π = (4, 4, . . . , 4, 3) or (4, 4, . . . , 4, 3, 2).

Then π ∈ Qe(n), and it has no preimage yet. So we map (n) to π.
Now listing the partitions of n for n ≤ 20 and n = 21, 23, 25, 27, 29, we get the
inequality is true for all even numbers, and for all odd numbers greater than 7.

10.5 Proofs of pSo (n) > pSe (n) with S = {2} and S =

{1, 2}
Proof of Theorem 10.1.6: Throughout this proof, S := {2}. Define

P S
e,e(n) := {λ ∈ P S

e (n) : `(λ) ≡ 0 (mod 2)}

and
P S
e,o(n) := {λ ∈ P S

e (n) : `(λ) ≡ 1 (mod 2)}.

We split P S
e (n) into the following five disjoint classes.

1. P S
e,1(n) := {λ ∈ P S

e,e(n) : λi 6= 1 for all i},

2. P S
e,2(n) := {λ ∈ P S

e,o(n) : a(λ) even, `e(λ)− `o(λ) ≥ 2, and λi 6= 1 for all i},

3. P S
e,3(n) := {λ ∈ P S

e,e(n) : λj = 1 for some j},

4. P S
e,4(n) := {λ ∈ P S

e,o(n) : λj = 1 for some j}, and

5. P S
e,5(n) := {λ ∈ P S

e,o(n) : a(λ) even, `e(λ) = `o(λ) + 1, and λi 6= 1 for all i}.

We apply the injective map f on P S
e,1(n) and P S

e,2(n). For the sets P S
e,3(n) and P S

e,4(n),
we apply f in a slightly different way. For a partition λ ∈ P S

e,3(n) ∪ P S
e,4(n), we first
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split it as λ = λ̂ ∪ (1, 1, . . . , 1), where λ̂ has no parts equal to 1. Then we define
f̂(λ) := f(λ̂)∪(1, . . . , 1). For example, (8, 8, 7, 6, 4, 4, 1, 1) 7→ (9, 9, 8, 5, 3, 3, 1, 1), and
(8, 8, 7, 6, 4, 1, 1) 7→ (10, 8, 7, 5, 3, 1, 1).
Now, we dissect the set P S

e,5(n) into two disjoint classes. For λ ∈ P S
e,5(n) with

its even component (resp. odd component) λe = (λe1 , λe2 , . . . , λer+1) (resp. λo =
(λo1 , λo2 , . . . , λor)), define

(5a) P
S

e,5(n) := {λ ∈ P S
e,5(n) : λe1 6= λe2 and λer+1 ≥ 6}, and

(5b) P
S,c

e,5(n) := P S
e,5(n) \ P S

e,5(n).

Define a map, say φ : P
S

e,5(n)→ P S
o (n) by φ(λ) := πo ∪ πe, where

πo = λo ∪ (1, 1, . . . , 1, 1) and πe = (λe1 − 4, λe2 − 2, . . . , λer+1 − 2).

By definition of φ, for λ ∈ P S

e,5(n) with `o(λ) = r it follows that

φ(P
S

e,5(n)) := P
S

o,5(n) := {π ∈ P S
o (n) : `e(π) = r + 1, `o,1(π) = r and multπ(1) = 2r + 4},

where `o,1(λ) denote the number of odd parts of λ ` n which are greater than 1.

Therefore, P
S

o,5(n) is disjoint with an image of any partition belongs to
⋃4
i=1 P

S
e,i(n)

under the map f or f̂ . Since the odd parts of λ are not altered, so the map is
injective.

Next, we further split P
S,c

e,5(n) into four disjoint subsets.

(5b1) P
S,c

e,51
(n) := {λ ∈ P S,c

e,5(n) : λi 6= 3},

(5b2) P
S,c

e,52
(n) := {λ ∈ P S,c

e,5(n) : `(λ) 6= 3 and multλ(3) = 1},

(5b3) P
S,c

e,53
(n) := {λ ∈ P S,c

e,5(n) : `(λ) 6= 5 and multλ(3) ≥ 2}, and

(5b4) P
S,c

e,54
(n) :=

⋃2
k=1 P

S,c

e,54,k
(n), with

P
S,c

e,54,k
(n) = {λ ∈ P S,c

e,5(n) : `(λ) = 2k + 1 and multλ(3) = k}.

We construct a map ρ : P
S,c

e,5(n)→ P S
o (n) by defining

for 1 ≤ t ≤ 3, ψ|
P
S,c
e,5t

(n)
:= ρt.

296



Case 1: Let λ = (λe1 , λe2 , . . . , λer+1) ∪ (λo1 , λo2 , . . . , λor) ∈ P
S,c

e,5(n). For 1 ≤ t ≤ 3,

ρt(λ) := λe ∪ (λo1 − 2, λo2 − 2, . . . , λor−t − 2, 1, 1, . . . , 1)

with multπ(1) = 2(r − t) +
∑t−1

k=0 λor−k and consequently for 1 ≤ t ≤ 2,

ρt(P
S,c

e,5t(n)) := P
S,c

o,5t(n)

:=
{
π ∈ P S

o (n) : multπ(1) = 2(r − t) +
t−1∑
k=0

λor−k , `e(π) = r + 1, `o,1(π) = r − t
}

;

whereas for t = 3,

ρ3(P
S,c

e,53
(n)) := P

S,c

o,53
(n)

:=
{
π ∈ P S

o (n) : multπ(1) = 2(r − t) +
2∑

k=0

λor−k , `e(π) = r + 1, `o,1(π) ≤ r − 3
}
.

So for each t we have,

2r − 2t+
t−1∑
k=0

λor−k >
`(π)

2
+ 1.

For example,

(10, 9, 7, 7, 6, 4, 4)
ρ1−→ (10, 7, 6, 5, 4, 4, 1, . . . , 1),

(10, 9, 7, 6, 4, 4, 3)
ρ2−→ (10, 7, 6, 4, 4, 1, . . . , 1),

(10, 9, 6, 4, 4, 3, 3)
ρ3−→ (10, 6, 4, 4, 1, . . . , 1),

(10, 9, 8, 7, 6, 6, 4, 4, 4, 3, 3, 3, 3)
ρ3−→ (10, 8, 7, 6, 6, 5, 4, 4, 4, 1, . . . , 1).

Case 2: For n even, we have to consider P
S,c

e,54,2
(n) ⊂ P

S,c

e,54
(n) as any partition λ ∈

P
S,c

e,54,2
(n) is of the form (λe1 , λe2 , λe3)∪(3, 3). Define ρ4(λ) := π = (λe1+3, λe2+3, λe3)

so that `o(π) − `e(π) = 1 and a(π) is odd. One can observe that ρ4(P
S,c

e,54,2
(n)) is

disjoint from the sets which have already a preimage either by the map f, f̂ , φ or by
{ρt}1≤t≤3.

Similarly, if n is odd, then we consider P
S,c

e,54,1
(n) ⊂ P

S,c

e,54
(n). We compare the

partitions λ = (λe1 , λe2)∪ (3) ∈ P S,c

e,54,1
(n) with the partitions of the form ((πo1 , πo2)∪

297



(3)) ∪ (4, 4) ∈ P S
o (n) where πo1 ≥ 5, and ((πo1 , πo2) ∪ (3)) ∪ (6, 4) ∈ P S

o (n) where
πo1 ≥ 7, for all n > 23. The total number of such partitions is(⌊

n− 9

4

⌋
− 1

)
+

(⌊
n− 11

4

⌋
− 1

)
,

and ∣∣∣P S,c

e,54,1
(n)
∣∣∣ =

⌊
n− 3

4

⌋
− 1.

Since n is odd, it is of the form 4s+ 1 or 4s+ 3. For any form of n we get,(⌊
n− 9

4

⌋
− 1

)
+

(⌊
n− 11

4

⌋
− 1

)
>

⌊
n− 3

4

⌋
− 1.

We note that the set P
S,c

e,54,1
(n) 6= ∅ for n = 11, 13, . . . , 23. In these cases λ =

(λe1 , λe2)∪(3) maps to ρ5(λ) := π = (λe2−1, λe2−1, 1)∪(λe1−λe2+4). `o(π)−`e(π) =
2 and the two greatest odd parts are equal. So it was not an image in the above
cases. For example, (14, 6, 3) maps to (12, 5, 5, 1).
Now, we observe that P S

o (n) has more classes of partitions for all n, which are not

mapped yet. For example, the partition where all parts are 1. Hence p
{2}
o (n) >

p
{2}
e (n) for all n ≥ 1. This completes the proof.

Proof of Theorem 10.1.7: For λ ∈ pSo (n), it is immediate that λei ≥ 4, where
λe = (λk1e1λ

k2
e2
. . . λkses ) is the even component of λ. So we can apply the injective map f

(cf. Section 10.2) onGe(n) ⊆ Pe(n). Consequently for λ = (λm1
1 λm2

2 . . . λmkk ) ∈ G0
e(n),

divide the subset G0
e(n) into two disjoint classes given as follows

G0
e(n) := G0

e,1(n) ∪G0
e,2(n),

with
G0
e,1(n) = {λ ∈ G0

e(n) : λ3 > 6}
and

G0
e,2(n) = {λ ∈ G0

e(n) : λ3 ∈ T}, where T = {3, 4, 5, 6}.
By a similar method to the proof of Theorem 10.1.5, this result can be proved. We
leave this as an exercise to the readers.

10.6 Concluding remarks

In continuation with the study on parity of parts, as discussed in the previous section
(cf. Section 10.5), we conclude this chapter by presenting a somewhat more general
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discussion on the prospect towards further study.
First, by allowing only distinct partitions in Qe(n) and Qo(n) into Theorem 10.1.5,
we propose the following problem.

Problem 10.6.1. For all m > 6 we have

dqo(2m) > dqe(2m),

and
dqo(2m+ 1) < dqe(2m+ 1).

Remark 10.6.2. In fact, dqo(2m+ 1) < dqe(2m+ 1) for m = 4, 5 as well.

Whereas, Theorems 10.1.6 and 10.1.7 suggest a more general family of inequalities
in the following sense.

Problem 10.6.3. For all k > 2 we have p
{k}
o (n) > p

{k}
e (n) and p

{1,k}
e (n) > p

{1,k}
o (n),

for all n > N(k), for some constant N(k), depending on k.
Moreover, it would be worthwhile to understand the threshold N(k) asymptotically.

10.7 Appendix: Proofs of Lemmas 10.2.1 and 10.2.2

Proof of Lemma 10.2.1: Take n = 2m with m ∈ Z≥7. So, we have to show

m−3∑
k=1

⌊m− k − 1

2

⌋
> 1 +

bm−1
3
c∑

k=1

⌊m− 3k + 1

2

⌋
+

bm−3
3
c∑

k=1

⌊m− 3k − 1

2

⌋
. (10.24)

Note that

m−3∑
k=1

⌊m− k − 1

2

⌋
=

m−4∑
k=0

⌊k + 2

2

⌋
>

m−4∑
k=0

(k + 2

2
− 1
) (

since, bxc > x− 1
)

=
(m− 4)(m− 3)

4
=
m2 − 7m+ 12

4
,

and

1 +

bm−1
3
c∑

k=1

⌊m− 3k + 1

2

⌋
+

bm−3
3
c∑

k=1

⌊m− 3k − 1

2

⌋
<
m2 + 3m− 3

6
. (10.25)
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Now,
m2 − 7m+ 12

4
>
m2 + 3m− 3

6
for m ∈ Z≥26. We finish the proof by checking

the inequality (10.24) for 7 ≤ m ≤ 25 numerically in Mathematica.

Proof of Lemma 10.2.2: The proof is exactly similar to the proof of Lemma
10.2.1.
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Part IV

Epilogue
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In this final part of the thesis, we address a few problems that arose in Chapters
3-8 which so far remained unanswered.
In Chapter 3, we proposed the Conjecture 3.1.2 on the asymptotic growth of the
cubic partition function a(n). Using Sussman’s theorem [138, Theorem 1.1], we ob-
tain a Hardy-Ramanujan-Rademacher type expansion for a(n). The next task would
be to estimate the absolute value of the exponential sum Ak(n) and apply Theorem
8.3.9 to get inequalities for I2(x) so that one can finally arrive at the inequalities for
a(n) similar to Theorem 3.4.4. Then we can follow the proof strategy as done for
Theorem 3.6.6 so as to verify the conjecture for a(n). This is work in progress.
In Chapter 4, the full asymptotic expansion for (−1)r−1∆r log p(n) is given in Theo-
rem 4.4.7. As we have already mentioned, a full asymptotic expansion merely depicts
the growth of a sequence whereas computation of error bounds is essential in order
to get an infinite family of inequalities for the sequence. Therefore, after Theorem
4.4.7, our next goal would be to obtain a lower and upper bound for the error term

E(r, n) := (−1)r−1∆r log p(n)−
w∑

u=2r−1

Gu

( 1√
n

)u
,

where w ≥ 2r − 1, r ≥ 2, for all u ≥ 1,

G2u =

[
(−1)u

u

{
u

r

}
+

u−r∑
k=1

g2k

(
−k
u− k

){
u− k
r

}]
(−1)r+1r! for all u ≥ r,

and for all u ≥ r − 1,

G2u+1 =

[
π

√
2

3

(
1/2

u+ 1

){
u+ 1

r

}
+

u−r∑
k=0

g2k+1

(
−k − 1/2

u− k

){
u− k
r

}]
(−1)r+1r!.

The main result of Chapter 6 is the infinite family of inequalities for p(n−`) with ` ∈
Z≥0 stated in Theorem 6.4.5. A similar result for p(n+ `) would be highly desirable
because then we can directly apply both inequalities for p(n+`) and p(n−`) without
making any shifts to a given problem on inequalities for the partition function. From
Section 6.7, we propose the following problems.

• Using Theorem 6.4.5 and by choosing the cut-off w(m) approximately 5m for all
m ≥ 12, then in order to confirm that (p(n))n≥NB(m) satisfies the higher order
Laguerre inequalities of order m, what would be the growth of NB(m) as m
getting larger? Moreover, how far NB(m) would be away from the real cut-off
NL(m)? Is it possible to choose the sequence of truncation points (w(m))m≥12,
so that NB(m)/NL(m)→ C as m→∞ for some C > 0? This would be a nice
extension of Theorem 6.7.1.
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• Similar to the problem of computing bounds of E(r, n) for (−1)r−1∆r log p(n),
we ask for an explicit error bound for ∆r

j(p(n)) followed by Theorem 6.7.8.

Concerning Chapter 8, we now focus only on Lemma 8.3.8. The reason behind this
is the bound on the absolute value of the error term E(ν,N, x) with ν ≤ N . Roughly
speaking, |E(ν,N, x)| is bounded by |aN+1(ν)| (the absolute value of the next term of
the asymptotic expansion of Iν(x), see equation (8.20)) multiplied by a “bad” term
of the form

√
N logN . Immediately, a question appears: (i) does

√
N logN actually

appear or is there some overestimation done in the proofs? (ii) if
√
N logN appears

at all, then for which value of x, |E(ν,N, x)| attains |aN+1(ν)|
√
N logN? We1 proved

that for x = O(N/2), E(ν,N, x) ∼ aN+1(ν)
√
N logN as N → ∞ for arbitrary but

fixed x ∈ R≥1. Therefore, the next question which springs up is: for which interval
of x, is |E(ν,N, x)| bounded by |aN+1(ν)| and what is the range of x when the bad
factor

√
N logN appears? In short, what is the asymptotic growth of |E(ν,N, x)|?

Finally, we trace back to the real rootedness of the Jensen polynomial Jd,np (x)
of degree d and shift n associated with (p(n))n≥0. Griffin, Ono, Rolen, and Zagier
proved that Jd,np (x) has all real and distinct roots for sufficiently large n from the
following limit formula

lim
n→∞

Ĵd,np (x) := lim
n→∞

(
δ−dn
p(n)

Jd,np

(
δnx− 1

eAn

))
= Hd(x), (10.26)

with

An =
2π√

24n− 1
− 24

24n− 1
and δn =

√
12π

(24n− 1)3/2
− 288

(24n− 1)2
.

In order to verify their conjecture for the cut-off N(d) is approximately 10d2 log d or
at least to get close to it; i.e., approximating N(d) by a polynomial in d, we need to
demystify (10.26). To do so, first we need to compute an effective error bound for the

absolute value of the difference between the normalized Jensen polynomial Ĵd,np (x)
and the Hermite polynomial Hd(x) for each d ≥ 2. Larson and Wagner [95] took the
approach following Hermite’s criteria to show Jd,np (x) has all real and distinct roots

for n ≥ N(d) but their estimation of N(d) is roughly of the form (3d)24d(50d)3d2

which is approximately the exponential of the conjectured real cut-off; i.e., ed
2 log d.

This motivates us to study (10.26) in the future through the lens of inequalities.

1This work is in progress (jointly with Silviu Radu)
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